A luminescent probe based on terbium-based metal-organic frameworks for organophosphorus pesticides detection
文献类型: 外文期刊
作者: Zhang, Zhikun 1 ; Zhang, Liu 1 ; Han, Ping 1 ; Liu, Qingju 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Inst Qual Stand & Testing Technol, Beijing 10097, Peoples R China
2.Hebei Univ Sci & Technol, Sch Chem & Pharmaceut Engn, Shijiazhuang 050018, Hebei, Peoples R China
关键词: Terbium-based metal-organic frameworks; Fluorescent probe; Organophosphorus pesticides; Chlorpyrifos; Acetylcholinesterase
期刊名称:MICROCHIMICA ACTA ( 影响因子:6.408; 五年影响因子:5.888 )
ISSN: 0026-3672
年卷期: 2022 年 189 卷 11 期
页码:
收录情况: SCI
摘要: Terbium-based metal-organic frameworks (Tb-MOF) prepared under mild conditions was utilized to construct a fluorescence probe for determination of organophosphorus pesticides (OPs) coupled with acetylcholinesterase (AChE), acetylcholine chloride (Ach), and choline oxidase (CHO). Since OPs have obvious inhibition on the activity of AChE in the Tb-MOF/ACh/CHO/AChE system, the detection of OPs was accomplished by restoring the fluorescence of Tb-MOF resulting from reduced production of H2O2. By taking chlorpyrifos (CPF) as a pesticide model, the method exhibits high sensitivity in the linear range 0.1-4.0 mu g.L-1 with the limit of detection (LOD) of 0.04 mu g.L-1 under optimum conditions (lambda(ex) = 280 nm, lambda(em) = 544 nm). The Tb-MOF/ACh/CHO/AChE fluorescence system has high selectivity for CPF. The method was successfully applied to the detection of CPF in tap water and strawberry samples (recovery of 87.36-115.60% for tap water and 95.04-103.20% for strawberry). Free from complicated fabrication operation, the Tb-MOF-based system is rapid, simple, and stable, which provides a reference and new way for the design of OPs fluorescent probes in the future.
- 相关文献
作者其他论文 更多>>
-
Maize seed fraud detection based on hyperspectral imaging and one-class learning
作者:Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Wu, Jianwei;Wu, Jianwei
关键词:Fraud detection; Maize seeds; Hyperspectral imaging; One -class learning; Deep learning
-
Aluminium-based metal-organic frameworks for the colorimetric ethephon detection in fruit by paper microsensor
作者:Zhang, Zhikun;Bai, Liwei;Li, Zhengjie;Han, Jilong;Liu, Qingju;Liu, Tianyi;Zhang, Huanshu
关键词:Ethephon; Fluorescence; MOF; Detection; Paper sensors
-
Biodegradation properties and mechanism of triketone herbicide mesotrione via newly isolated bacterium Klebsiella pasteurii CM-1
作者:Cao, Xiaotian;Li, Yuanfu;Liu, Wei;Hou, Ning;Zhao, Feng;Tan, Huihua;Han, Ping
关键词:Mesotrione; Biodegradation; Klebsiella pasteurii; Molecular mechanism; Nitroreductase
-
Porphyrin-based covalent organic framework as oxidase mimic for highly sensitive colorimetric detection of pesticides
作者:Liu, Qingju;Zhu, Junyi;Wang, Hui;Luan, Yunxia;Zhang, Zhikun
关键词:Porphyrin-based covalent organic framework; Oxidase mimics; Colorimetric detection; Pesticides
-
Construction of an Au/g-C 3 N 4 /GO/Au substrate by a layer-by-layer assembly approach for surface-enhanced Raman spectroscopy
作者:Xu, Jingjing;Wei, Jingyi;Cui, Yanying;Guo, Sufang;An, Qi;Yu, Sixian;Han, Ping
关键词:Surface enhanced Raman spectroscopy; Layer -by -layer self -assembly; Food colorant detection; Water droplet evaporation; Au nanoparticles; Graphitic carbon nitride
-
A hyperspectral band selection method based on sparse band attention network for maize seed variety identification
作者:Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Zhang, Liu;Wei, Yaoguang;Liu, Jincun;An, Dong;Wu, Jianwei;Wu, Jianwei
关键词:Hyperspectral imaging; Band selection; Attention mechanism; Deep learning; Seed variety identification
-
Maize seed variety identification using hyperspectral imaging and self-supervised learning: A two-stage training approach without spectral preprocessing
作者:Zhang, Liu;Zhang, Shubin;Liu, Jincun;Wei, Yaoguang;An, Dong;Zhang, Liu;Zhang, Shubin;Liu, Jincun;Wei, Yaoguang;An, Dong;Zhang, Liu;Zhang, Shubin;Liu, Jincun;Wei, Yaoguang;An, Dong;Zhang, Liu;Zhang, Shubin;Liu, Jincun;Wei, Yaoguang;An, Dong;Wu, Jianwei;Wu, Jianwei
关键词:Seed classification; Hyperspectral imaging; Self-supervised learning; Deep learning; Spectral analysis