Differential analysis and genome-wide association analysis of stomata density of maize inbred lines leaves at ear position
文献类型: 外文期刊
作者: Jin, Yu 1 ; Wang, Jinglu 1 ; Zhang, Ying 2 ; Zhao, Yanxin 4 ; Lu, Xianju 2 ; Wen, Weiliang 2 ; Liu, Xiang 2 ; Guo, Xinyu 1 ; Zhao, Chunjiang 1 ;
作者机构: 1.Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan 430070, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing Key Lab Digital Plant, Beijing 100097, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
4.Beijing Acad Agr & Forestry Sci, Beijing Key Lab Maize DNA Fingerprinting & Mol Bre, Maize Res Ctr, Beijing 100097, Peoples R China
关键词: maize; ear leaf; stomata density; genome-wide association analysis; haplotype
期刊名称:CANADIAN JOURNAL OF PLANT SCIENCE ( 影响因子:1.2; 五年影响因子:1.5 )
ISSN: 0008-4220
年卷期: 2023 年
页码:
收录情况: SCI
摘要: The stomatal complex on the surface of maize leaves is closely related to photosynthesis and transpiration, and the study of maize stomatal phenotypes and the discovery of their regulatory genes are of great importance for the breeding of highquality and high-yielding maize. In this study, rapid scanning electron microscopy was used to obtain images of the abaxial stomata of 457 maize inbred lines with extensive genetic variation, and stomata density was obtained by counting. The results of correlation showed that stomata density was significantly correlated with leaf width, and Analysis of variance found that there were significant differences (P value < 0.05) in stomata density among different leaf width and 100-grain weight. The highest stomata density was found in the inbred lines with wide and short leaves and higher 100-grain weight. Furthermore, genome-wide association analysis was performed using a mixed linear model. It showed that eight SNPs significantly associated with stomata density were obtained, which could explain 35.507% of the phenotypic variation. Among these, four SNPs on chromosome 5 were tightly linked, mainly formatting two haplotypes, CTTA (0.636) and TCCG (0.330). Twelve genes with functional annotation were identified within 100 kb upstream and downstream of the eight SNPs. One gene, GRMZM2G068277, which had been shown to be involved in plant mitotic processes and exhibited high expression at the leaf base, was therefore the most likely candidate gene for stomata density. The results presented here could provide references for further cloning of functional genes related to stomata density.
- 相关文献
作者其他论文 更多>>
-
LettuceP3D: A tool for analysing 3D phenotypes of individual lettuce plants
作者:Ge, Xiaofen;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Wu, Sheng;Wen, Weiliang;Shen, Fei
关键词:Lettuce; Point cloud segmentation; Deep learning; Phenotypic analysis algorithm
-
3D time-series phenotyping of lettuce in greenhouses
作者:Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu;Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Lu, Xianju;Fan, Jiangchuan;Zhang, Minggang;Liang, Yuqiang;Gu, Shenghao;Guo, Xinyu
关键词:Time-series; 3D phenotyping; Rail-driven phenotyping platform; Lettuce; Greenhouse
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Comprehensive review on 3D point cloud segmentation in plants
作者:Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli
关键词:Plant; Three-dimensional; Point cloud; Segmentation; Multi-scale; Deep learning



