Integrative transcriptome and proteome analysis reveals maize responses to Fusarium verticillioides infection inside the stalks
文献类型: 外文期刊
作者: Zhang, Lili 1 ; Hou, Mengwei 2 ; Zhang, Xingrui 1 ; Cao, Yanyong 2 ; Sun, Suli 1 ; Zhu, Zhendong 1 ; Han, Shengbo 2 ; Chen, Yanhui 3 ; Ku, Lixia 3 ; Duan, Canxing 1 ;
作者机构: 1.Chinese Acad Agr Sci, Inst Crop Sci, Beijing 100081, Peoples R China
2.Henan Acad Agr Sci, Inst Cereal Crops, Zhengzhou 450002, Peoples R China
3.Henan Agr Univ, Coll Agron, Zhengzhou 450002, Peoples R China
4.Shennong Lab, Zhengzhou 450002, Peoples R China
关键词: Fusarium verticillioides stalk rot; iTRAQ; LOX2; maize; RNA sequencing
期刊名称:MOLECULAR PLANT PATHOLOGY ( 影响因子:4.9; 五年影响因子:5.9 )
ISSN: 1464-6722
年卷期: 2023 年 24 卷 7 期
页码:
收录情况: SCI
摘要: Fusarium stalk rot caused by Fusarium verticillioides is one of the most devastating diseases of maize that causes significant yield losses and poses potential security concerns for foods worldwide. The underlying mechanisms of maize plants regulating defence against the disease remain poorly understood. Here, integrative proteomic and transcriptomic analyses were employed to identify pathogenesis-related protein genes by comparing differentially expressed proteins (DEPs) and differentially expressed genes (DEGs) in maize stalks after inoculation with F. verticillioides. Functional enrichment analysis showed that DEGs and DEPs were mainly enriched in glutathione metabolism, starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, linoleic acid metabolism, and phenylpropanoid biosynthesis. Fourteen DEGs and DEGs that were highly elevated after inoculation with F. verticillioides were confirmed with parallel reaction monitoring and reverse transcription-quantitative PCR, demonstrating the accountability and reliability of proteomic and transcriptomic data. We also assessed the potential roles of defence-related genes ZmCTA1, ZmWIP1, and ZmLOX2, identified from the multi-omics analysis, during the process of F. verticillioides infection through virus-induced gene silencing. The elevation of stalk rot symptomatic characteristics in the silenced plants revealed their contribution to resistance. We further functionally characterized the roles of ZmLOX2 expression in the defence response of maize plants conditioning fungal invasion via the salicylic acid-dependent pathway. Collectively, this study provides a comprehensive analysis of transcriptome and proteome of maize stalks following F. verticillioides inoculation, and defence-related genes that could inform selection of new genes as targets in breeding strategies.
- 相关文献
作者其他论文 更多>>
-
NIa-Pro of sugarcane mosaic virus targets Corn Cysteine Protease 1 (CCP1) to undermine salicylic acid-mediated defense in maize
作者:Yuan, Wen;Chen, Xi;Du, Kaitong;Jiang, Tong;Li, Mengfei;Fan, Zaifeng;Zhou, Tao;Yuan, Wen;Chen, Xi;Du, Kaitong;Jiang, Tong;Li, Mengfei;Fan, Zaifeng;Zhou, Tao;Cao, Yanyong;Li, Xiangdong;Doehlemann, Gunther
关键词:
-
Rapid and quantitative detection of Aspergillus niger Van Tieghem using loop-mediated isothermal amplification assay
作者:Dai, Xiaodong;Zhang, Xinyou;Cao, Yanyong;Hou, Meiwei;Li, Huimin;Dai, Xiaodong;Cao, Yanyong;Zhang, Xinyou;Yu, Minghui;Li, Jie;Li, Hangyu;Li, Peipei;Wang, Zhenyu
关键词:Aspergillus niger; GOD; Loop-mediated isothermal amplification; Rapid and quantitative detection
-
Regulatory mechanisms used by ZmMYB39 to enhance drought tolerance in maize (Zea mays) seedlings
作者:Ren, Zhenzhen;Su, Huihui;Ku, Lixia;Ren, Zhenzhen;Su, Huihui;Ku, Lixia;Zhang, Pengyu;Xie, Xiaowen;Shao, Jing;Tian, Zhiqiang;Wei, Li;Deng, Dezhi
关键词:Zea mays; Drought stress; MYB transcription factor
-
Exogenous Uniconazole Application Positively Regulates Carbon Metabolism under Drought Stress in Wheat Seedlings
作者:Jiang, Ying;Rong, Hao;Wang, Qiang;Lu, Yingchao;Li, Na;Li, Weiqiang;Li, Min;Xie, Tao;Wang, Shanshan;Zhao, Hong;Qian, Yumei;Cao, Yanyong;Cao, Yanyong;Qian, Yumei
关键词:wheat; uniconazole; carbon metabolism; gene expression; drought stress
-
Transcriptomic and Metabolomic Analyses Reveal the Role of Phenylalanine Metabolism in the Maize Response to Stalk Rot Caused by Fusarium proliferatum
作者:Sun, Jianjun;Wang, Yanzhao;Cheng, Zeqiang;Song, Yinghui;Li, Huimin;Wang, Na;Liu, Shen;Cao, Zijia;Li, Hongxia;Zheng, Wanying;Cao, Yanyong;Zhang, Xingrui;Duan, Canxing;Cao, Yanyong
关键词:transcriptome; metabolome; maize stalk rot; Fusarium proliferatum; phenylalanine metabolism
-
Genome-wide association study of maize resistance to Pythium aristosporum stalk rot
作者:Hou, Mengwei;Cao, Yanyong;Jia, Tengjiao;Yang, Jiwei;Han, Shengbo;Wang, Lifeng;Li, Jingjing;Wang, Hao;Zhang, Lili;Li, Huiyong;Zhang, Xingrui;Duan, Canxing;Zhang, Shulin;Wu, Xiaolin
关键词:maize stalk rot; Pythium aristosporum; genome-wide association study; resistance gene; leucine-rich repeat receptor-like kinase; virus-induced gene silencing
-
Single-cell RNA sequencing profiles reveal cell type-specific transcriptional regulation networks conditioning fungal invasion in maize roots
作者:Cao, Yanyong;Zhang, Xingrui;Sun, Suli;Dong, Zhenying;Zhu, Zhendong;Duan, Canxing;Cao, Yanyong;Ma, Juan;Han, Shengbo;Hou, Mengwei;Zhou, Xiaoxiao;Zhang, Lili;Cao, Yanyong;Wei, Xun;Dong, Zhenying;Long, Yan;Wan, Xiangyuan;Cao, Yanyong;Ku, Lixia;Tang, Jihua;Han, Shengbo;Ku, Lixia;Tang, Jihua;Zhang, Lili;Zhang, Zhanyuan J.;Li, Xiangdong;Zhang, Zhanyuan J.
关键词:maize stalk rot; scRNA-seq; Fusarium verticillioides; co-expression module; immune regulatory networks