Tea Cultivation Suitability Evaluation and Driving Force Analysis Based on AHP and Geodetector Results: A Case Study of Yingde in Guangdong, China
文献类型: 外文期刊
作者: Chen, Panpan 1 ; Li, Cunjun 1 ; Chen, Shilin 2 ; Li, Ziyang 1 ; Zhang, Hanyue 4 ; Zhao, Chunjiang 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Res Ctr Informat Technol, Beijing 100089, Peoples R China
2.Piesat Informat Technol Co Ltd, Beijing 100089, Peoples R China
3.Jiangxi Univ Sci & Technol, Civil & Surveying & Mapping Engn, Ganzhou 341000, Peoples R China
4.Beijing Forestry Univ, Precis Forestry Key Lab Beijing, Beijing 100083, Peoples R China
关键词: tea; suitability evaluation; GIS; analytical hierarchy process; Geodetector; driving force analysis
期刊名称:REMOTE SENSING ( 影响因子:5.349; 五年影响因子:5.786 )
ISSN:
年卷期: 2022 年 14 卷 10 期
页码:
收录情况: SCI
摘要: Tea is an economically important crop. Evaluating the suitability of tea can better optimize the regional layout of the tea industry and provide a scientific basis for tea planting plans, which is also conducive to the sustainable development of the tea industry in the long run. Driving force analysis can be carried out to better understand the main influencing factors of tea growth. The main purpose of this study was to evaluate the suitability of tea planting in the study area, determine the prioritization of tea industry development in this area, and provide support for the government's planning and decision making. This study used Sentinel image data to obtain the current land use data of the study area. The results show that the accuracy of tea plantation classification based on Sentinel images reached 86%, and the total accuracy reached 92%. Then, we selected 14 factors, including climate, soil, terrain, and human-related factors, using the analytic hierarchy process and spatial analysis technology to evaluate the suitability of tea cultivation in the study area and obtain a comprehensive potential distribution map of tea cultivation. The results show that the moderately suitable area (36.81%) accounted for the largest proportion of the tea plantation suitability evaluation, followed by the generally suitable area (31.40%), the highly suitable area (16.91%), and the unsuitable area (16.23%). Among these areas, the highly suitable area is in line with the distribution of tea cultivation at the Yingde municipal level. Finally, to better analyze the contribution of each factor to the suitability of tea, the factors were quantitatively evaluated by the Geodetector model. The most important factors affecting the tea cultivation suitability evaluation were temperature (0.492), precipitation (0.367), slope (0.302), and elevation (0.255). Natural factors influence the evaluation of the suitability of tea cultivation, and the influence of human factors is relatively minor. This study provides an important scientific basis for tea yield policy formulation, tea plantation site selection, and adaptation measures.
- 相关文献
作者其他论文 更多>>
-
Staggered-Phase Spray Control: A Method for Eliminating the Inhomogeneity of Deposition in Low-Frequency Pulse-Width Modulation (PWM) Variable Spray
作者:Zhang, Chunfeng;Zhao, Chunjiang;Zhang, Chunfeng;Zhai, Changyuan;Zhang, Meng;Zhang, Chi;Zou, Wei;Zhao, Chunjiang;Zhang, Chunfeng;Zou, Wei;Zhai, Changyuan;Zhang, Meng;Zhao, Chunjiang
关键词:precision spray; variable spray; PWM; deposition; duty cycle; frequency
-
A novel electrochemical sensor for in situ and in vivo detection of sugars based on boronic acid-diol recognition
作者:Liu, Ke;Xu, Tongyu;Zhao, Chunjiang;Liu, Ke;Li, Aixue;Zhao, Chunjiang
关键词:Fructose; Glucose; Electrochemical biosensor; In situ; In vivo; Artificial neural network
-
Eliminating Primacy Bias in Online Reinforcement Learning by Self-Distillation
作者:Li, Jingchen;Wu, Huarui;Zhao, Chunjiang;Shi, Haobin;Hwang, Kao-Shing
关键词:Online reinforcement learning; overfitting; reinforcement learning
-
Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat
作者:Li, Wenrui;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu
关键词:3D reconstruction; plant morphology; point cloud segmentation; Wheat
-
Dynamic Compressive Stress Relaxation Model of Tomato Fruit Based on Long Short-Term Memory Model
作者:Ru, Mengfei;Zhao, Chunjiang;Feng, Qingchun;Sun, Na;Li, Yajun;Sun, Jiahui;Li, Jianxun;Ru, Mengfei;Feng, Qingchun;Zhao, Chunjiang
关键词:tomato; stress relaxation; machine learning; LSTM
-
Energy and environmental evaluation and comparison of a diesel-electric hybrid tractor, a conventional tractor, and a hillside mini-tiller using the life cycle assessment method
作者:Liu, Wei;Yang, Rui;Li, Li;Zhao, Chunjiang;Li, Guanglin;Zhao, Chunjiang
关键词:Agricultural machinery; Electrification; Hybrid electric tractor; Environmental impact
-
Agricultural machinery automatic navigation technology
作者:Yao, Zhixin;Zhao, Chunjiang;Zhang, Taihong;Zhao, Chunjiang;Yao, Zhixin;Zhang, Taihong
关键词: