The central role of GmGLP20.4 in root architecture modifications of soybean under low-nitrogen stress
文献类型: 外文期刊
作者: Wang, Wei 1 ; Li, Jiajia 1 ; Nadeem, Muhammad 1 ; Wang, Jianxin 1 ; Huang, Ru 1 ; Liu, Qian 1 ; Fan, Wenqiao 1 ; Zheng, Haowei 1 ; Yan, Long 2 ; Wang, Xiaobo 1 ;
作者机构: 1.Anhui Agr Univ, Sch Agron, Hefei 230036, Peoples R China
2.Hebei Acad Agr & Forestry Sci, Inst Cereal & Oil Crops, Key Lab Crop Genet & Breeding Hebei, Shijiazhuang, Hebei, Peoples R China
期刊名称:THEORETICAL AND APPLIED GENETICS ( 影响因子:5.574; 五年影响因子:5.662 )
ISSN: 0040-5752
年卷期:
页码:
收录情况: SCI
摘要: Key message The GmGLP20.4 candidate gene plays an important role to improve soybean root architecture under low-nitrogen stress. The results lay the foundation for breeding low-nitrogen-tolerant soybean. Roots are fundamentally important for plant growth and development, facilitating water and nutrient uptake. Various abiotic and biotic factors significantly affect the root system architecture, especially low nitrogen (LN), but the molecular mechanism remains unclear. In this study, we identified GmGLP20.4, a germin-like protein (ubiquitous plant glycoproteins belonging to the Cupin superfamily) crucial for lateral root development and highly induced by LN stress in lateral roots of soybean. GmGLP20.4 overexpression increased root biomass through development of an improved root system in soybean under LN, whereas a significant decrease in root biomass was observed in the gmglp20.4 knockout mutant. Overexpression of GmGLP20.4 improved plant growth and root architecture in transgenic tobacco (Nicotiana tabacum) under LN. Natural variation of the GT-1 cis-element in the promoter (T to A) of GmGLP20.4 was strongly associated with its expression level under LN, and significantly increased LN-sensitive variation (type A) was observed in wild soybean compared to that in elite cultivars. Thus, type A variation in the promoter of GmGLP20.4 may have been a site of artificial selection during domestication. The GmGT1-16g gene was highly expressed under LN and showed an expression pattern opposite to that of GmGLP20.4. A luciferase complementation imaging assay revealed that the GmGLP20.4 promoter specifically binds to GmGT1-16g. In conclusion, GmGLP20.4 is involved in soybean root development and the natural variation of its promoter will be useful in modern intercropping systems or to improve nitrogen-use efficiency.
- 相关文献
作者其他论文 更多>>
-
A comprehensive analysis of the WRKY family in soybean and functional analysis of GmWRKY164-GmGSL7c in resistance to soybean mosaic virus
作者:Zhao, Zhihua;Wang, Rongna;Su, Weihua;Sun, Tianjie;Qi, Mengnan;Zhang, Xueyan;Wei, Fengju;Zhang, Jie;Wang, Dongmei;Yu, Zhouliang;Xiao, Fuming;Yan, Long;Yang, Chunyan
关键词:Soybean; SMV; WRKY gene family; Callose deposition
-
Cold tolerance SNPs and candidate gene mining in the soybean germination stage based on genome-wide association analysis
作者:Chen, Yuehan;Ma, Qian;Chen, Yuehan;Liu, Zhi;Yang, Qing;Li, Chenhui;Shi, Xiaolei;Zhang, Mengchen;Yang, Chunyan;Yan, Long;Han, Dezhi;Jia, Hongchang;Wang, Shu;Lu, Wencheng;Qiu, Lijuan
关键词:
-
Improving soybean yield prediction by integrating UAV nadir and cross-circling oblique imaging
作者:Sun, Guangyao;Xu, Yun;Zhang, Yong;Wang, Lei;Li, Mingxue;Sun, Xuhong;Chen, Haochong;Fei, Shuaipeng;Xiao, Shunfu;Ma, Yuntao;Yan, Long;Li, Yinghui;Qiu, Lijuan
关键词:Data fusion; Unmanned aerial vehicle; Feature dimensionality reduction; Ensemble learning; Shapley value
-
De novo genome assembly of a high-protein soybean variety HJ117
作者:Liu, Zhi;Yang, Qing;Liu, Bingqiang;Li, Chenhui;Shi, Xiaolei;Wei, Yu;Yang, Chunyan;Zhang, Mengchen;Yan, Long;Li, Chenhui;Guan, Yuefeng
关键词:Soybean; De novo assembly; Genome feature; High protein content
-
Ability of Genomic Prediction to Bi-Parent-Derived Breeding Population Using Public Data for Soybean Oil and Protein Content
作者:Li, Chenhui;Li, Chenhui;Yang, Qing;Liu, Bingqiang;Shi, Xiaolei;Liu, Zhi;Yang, Chunyan;Zhang, Mengchen;Yan, Long;Wang, Tao;Xiao, Fuming;Shi, Ainong
关键词:soybean; protein content; oil content; GP; prediction ability; G-BLUP
-
Protein homeostasis and cell wall remodeling in response to jasmonate and gibberellin signals improve flood tolerance in soybean ( Glycine max L.)
作者:Wang, Xin;Li, Fei;Zhou, Shunli;Sun, Lianjun;Komatsu, Setsuko;Yan, Long;Xu, Ran
关键词:Soybean seedling; Flooding tolerance; Root tips; Proteomics; Quantitative trait loci
-
Development of SNP marker panels for genotyping by target sequencing (GBTS) and its application in soybean
作者:Yang, Qing;Shi, Xiaolei;Qin, Jun;Zhang, Mengchen;Yang, Chunyan;Yan, Long;Zhang, Jianan;Chen, Lei;Song, Qijian
关键词:Soybean breeding; Marker-assisted selection (MAS); SNP marker panel; Genotyping by target sequencing (GBTS); Germplasm evaluation; QTL identification