Small-sample learning with salient-region detection and center neighbor loss for insect recognition in real-world complex scenarios
文献类型: 外文期刊
作者: Yang, Zhankui 1 ; Yang, Xinting 2 ; Li, Ming 2 ; Li, Wenyong 2 ;
作者机构: 1.Beijing Univ Technol, Coll Comp Sci & Technol, Beijing 100124, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100089, Peoples R China
3.Natl Engn Lab Qual & Safety Traceabil Technol & A, Beijing, Peoples R China
关键词: Fine-grained recognition; Small-sample learning; Salient-region detection; Center neighbor loss function
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:5.565; 五年影响因子:5.494 )
ISSN: 0168-1699
年卷期: 2021 年 185 卷
页码:
收录情况: SCI
摘要: Most real-world scenarios face the problems of small-sample learning and fine-grained recognition. For many rare insect classes, collecting a large number of training samples is infeasible or even impossible. In contrast, humans are able to recognize a new object class with little supervision. This motivates us to address the problems of small-sample recognition and fine-grained recognition for insects by combining recognition and localization; this can provide an effective remedy for data scarcity and the two techniques can bootstrap from each other. In this paper, we propose a saliency-detection model to localize the key regions that have the largest discriminative features for fine-grained insect classification. The learner learns to predict foreground and background masks for such localization, having been trained on a training set annotated with bounding boxes. Additionally, to further generate discriminative features, a center neighbor loss function is used to construct a robust feature-space distribution. The proposed model is trained end-to-end on our small-sample learning dataset, which comprises 220 insect categories from a real-world complex environment. Compared with the method using prototypical networks, the proposed method achieves a superior performance, with a mean recognition rate (top-5 accuracy) of 57.65%, and can effectively recognize insects under small-sample and complex-scene conditions.
- 相关文献
作者其他论文 更多>>
-
GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition
作者:Zhao, Zhenxi;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Zhao, Zhenxi;Yang, Xinting;Zhou, Chao;Zhao, Chunjiang;Liu, Jintao
关键词:Fish; Feature extraction; Activity recognition; Calibration; Adhesives; Training; Convolution; Graph convolution vector calibration; fish group activity; activity feature vector calibration; fish activity dataset
-
Porphyrin fluorescence imaging for real-time monitoring and visualization of the freshness of beef stored at different temperatures
作者:Liu, Huan;Zhu, Lei;Ji, Zengtao;Zhang, Min;Yang, Xinting;Liu, Huan;Zhu, Lei;Ji, Zengtao;Yang, Xinting;Zhang, Min;Liu, Huan;Ji, Zengtao;Yang, Xinting;Liu, Huan;Ji, Zengtao;Yang, Xinting
关键词:Porphyrin; Fluorescence imaging; Beef; Freshness; Visualization
-
Integration of Deep Learning and Sparrow Search Algorithms to Optimize Greenhouse Microclimate Prediction for Seedling Environment Suitability
作者:Shi, Dongyuan;Yuan, Pan;Liang, Longwei;Li, Ming;Diao, Ming;Shi, Dongyuan;Li, Ming;Gao, Lutao
关键词:CNN; greenhouse microclimate; LSTM; sparrow search algorithm; time series prediction
-
Role of Rain in the Spore Dispersal of Fungal Pathogens Associated with Grapevine Trunk Diseases
作者:Ji, Tao;Ji, Tao;Altieri, Valeria;Salotti, Irene;Rossi, Vittorio;Li, Ming
关键词:Bayesian analysis; grapevine trunk diseases; rain threshold; spore sampling
-
Seasonal Periodicity of the Airborne Spores of Fungi Causing Grapevine Trunk Diseases: An Analysis of 247 Studies Published Worldwide
作者:Ji, Tao;Ji, Tao;Salotti, Irene;Altieri, Valeria;Rossi, Vittorio;Li, Ming
关键词:grapevine trunk diseases; inoculum presence; seasonal periodicity; spore trapping
-
FCFormer: fish density estimation and counting in recirculating aquaculture system
作者:Zhu, Kaijie;Ma, Pingchuan;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen;Zhu, Kaijie;Yang, Xinting;Yang, Caiwei;Fu, Tingting;Ma, Pingchuan;Hu, Weichen
关键词:recirculating aquaculture systems; density estimation; fish counting; transformer; deep learning
-
Numerical Simulation of Structural Performance in a Single-Tube Frame for 12 m-Span Chinese Solar Greenhouses Subjected to Snow Loads
作者:Li, Ming;Zhao, Qingsong;Wei, Xiaoming;Wang, Lichun;Wei, Xiaoming;Wang, Lichun
关键词:reinforcement; initial geometry imperfection; cross-section



