N2O and NO production and functional microbes responding to biochar aging process in an intensified vegetable soil
文献类型: 外文期刊
作者: Zhang, Xi 1 ; Zhang, Junqian 1 ; Song, Mengxin 1 ; Dong, Yubing 1 ; Xiong, Zhengqin 1 ;
作者机构: 1.Nanjing Agr Univ, Coll Resources & Environm Sci, Jiangsu Key Lab Low Carbon Agr & GHGs Mitigat, Nanjing 210095, Peoples R China
2.Jiangsu Acad Agr Sci, Huaiyin Inst Agr Sci Xuhuai Reg Jiangsu, Huaian 223001, Peoples R China
关键词: Vegetable soil; Aged biochar; Nitrous oxide; Nitric oxide; Gene abundance
期刊名称:ENVIRONMENTAL POLLUTION ( 影响因子:9.988; 五年影响因子:10.366 )
ISSN: 0269-7491
年卷期: 2022 年 307 卷
页码:
收录情况: SCI
摘要: Vegetable soils with high nitrogen input are hotspots of nitrous oxide (N2O) and nitric oxide (NO), and biochar amended to soil has been documented to effectively decrease N2O and NO emissions. However, the aging effects of biochar on soil N2O and NO production and the relevant mechanisms are not thoroughly understood. A(15)N tracing microcosm study was conducted to clarify the responses of N2O and NO production pathways to the biochar aging process in vegetable soil. The results showed that autotrophic nitrification was the predominant source of N2O production. Biochar aging increased the O-containing functional groups while lowering the aromaticity and pore size. Fresh biochar enhanced the AOB-amoA gene abundance and obviously stimulated N2O production by 15.5% via autotrophic nitrification and denitrification. In contrast, field-aged biochar markedly weakened autotrophic nitrification and denitrification and thus decreased N2O production by 17.0%, as evidenced by the change in AOB-amoA and nosZI gene abundances. However, the amendment with artificially labaged biochar had no effect on N2O production. With the extension of aging time, biochar application reduced the soil NO production dominated by nitrification. Changes in the N2O and NO fluxes were closely associated with soil NH4+-N and NO2--N contents, indicating that autotrophic nitrification played a critical role in NO production. Overall, our study demonstrated that field-aged biochar suppressed N2O production via autotrophic nitrification and denitrification by regulating associated functional genes, but not for lab-aged biochar or fresh biochar. These findings improved our insights regarding the implications of biochar aging on N2O and NO mitigation in vegetable soils.
- 相关文献
作者其他论文 更多>>
-
Optimizing organic fertilization towards sustainable vegetable production evaluated by long-term field measurement and multi-level fuzzy comprehensive model
作者:Xu, Xintong;Bi, Ruiyu;Jiao, Ying;Wang, Bingxue;Dong, Yubing;Xiong, Zhengqin;Xu, Xintong;Xiao, Chao;Xiao, Chao;Dong, Yubing
关键词:Organic fertilizer; Phospholipid fatty acids; Amino sugar; Sustainable yield index; Comprehensive model
-
Symbiotic nitrogen fixation enhanced crop production and mitigated nitrous oxide emissions from paddy crops
作者:Dong, Yubing;Zhang, Junqian;Xu, Xintong;Xiong, Zhengqin;Dong, Yubing;Dong, Qingjun;Zhang, Ankang
关键词:Green manure; Hairy vetch; Symbiotic nitrogen fixation; Greenhouse gas; Rice -upland cropping
-
Fe/BC co-conditioners with environmental and economic benefits on composting: reduced NH3 emissions and improved fertilizer quality
作者:Wang, Jixiang;He, Weijiang;Zhang, Xi;Feng, Yanfang;Xue, Lihong;Wang, Jixiang;Xie, Huifang;He, Weijiang;Huang, Junxia;Wu, Jun
关键词:Aerobic composting; Biochar; Organic fertilizer; NH3 emissions; FeCl3
-
Machine learning algorithms realized soil stoichiometry prediction and its driver identification in intensive agroecosystems across a north-south transect of eastern China
作者:Xu, Xintong;Dong, Yubing;Zhan, Liping;Bi, Ruiyu;Song, Mengxin;Xiong, Zhengqin;Xu, Xintong;Xiao, Chao;Dong, Yubing;Pan, Jun
关键词:Machine learning; Prediction performance; Nutrient stoichiometry; Climate zones; Feature importance assessment
-
DMPP mitigates N 2 O and NO productions by inhibiting ammonia-oxidizing bacteria in an intensified vegetable field under different temperature and moisture regimes
作者:Zhang, Xi;Xu, Xintong;Wang, Chenyuan;Zhang, Qianqian;Dong, Yubing;Xiong, Zhengqin;Zhang, Xi;Zhang, Qianqian;Dong, Yubing
关键词:3,4-dimethylpyrazole phosphate; environment condition; gene abundance; nitrification inhibitor; nitrite accumulation; soil water content
-
Contributions of Ammonia-Oxidizing Archaea and Bacteria to Nitrous Oxide Production in Intensive Greenhouse Vegetable Fields
作者:Dong, Yubing;Xu, Xintong;Zhang, Junqian;Jiao, Ying;Wang, Bingxue;Wang, Chenyuan;Xiong, Zhengqin;Dong, Yubing
关键词:intensive vegetable production; greenhouse gas; nitrification inhibitor; ammonia-oxidizing archaea (AOA); ammonia-oxidizing bacteria (AOB)
-
Struvite as P Fertilizer on Yield, Nutrient Uptake and Soil Nutrient Status in the Rice-Wheat Rotation System: A Two-Year Field Observation
作者:Wang, Jizheng;Xue, Lihong;Hou, Pengfu;Hao, Tianjia;Sun, Tianyi;Wang, Jizheng;Xue, Lihong;Hou, Pengfu;Hao, Tianjia;Xue, Lixiang;Zhang, Xi;Sun, Tianyi;Yang, Linzhang;Lobanov, Sergey
关键词:struvite; P reduction; grain yield; nutrient use efficiency; P apparent balance; rice-wheat rotation