A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
文献类型: 外文期刊
作者: Zhao, Dan 1 ; Xu, Tongyu 1 ; Henke, Michael 3 ; Yang, Hao 2 ; Zhang, Chengjian 2 ; Cheng, Jinpeng 2 ; Yang, Guijun 2 ;
作者机构: 1.Shenyang Agr Univ, Coll Informat & Elect Engn, Shenyang 110866, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R China
3.Hunan Agr Univ, Sch Agron, Changsha 410128, Peoples R China
关键词: 3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:7.7; 五年影响因子:8.4 )
ISSN: 0168-1699
年卷期: 2024 年 224 卷
页码:
收录情况: SCI
摘要: Three-dimensional (3D) scenes of a maize canopy can be utilized to depict its vertical structure and serve as the foundation for a 3D radiative transfer model. Given the inherent heterogeneity of canopy structures, evaluating their spectral response is crucial for remote-sensing inversion algorithms. Yet existing methods to model 3D canopy scenes of crops lack the high efficiency required for large-scale breeding applications. Hence, this study aims to develop a method to rapidly construct 3D canopy scenes of maize based on key structural parameters -namely, leaf area, base angle, and inclination angle -across multiple cultivars and growth stages. The accuracy of this canopy scenes modeling method was validated by comparison with a fine-scale 3D model and a multi-growth stage reflectance dataset. The root mean square error (RMSE) and normalized root mean square error (NRMSE) between the fine-scale 3D model and the constructed 3D model were less than 0.021 and 6.4%, respectively. Moreover, the RMSE and NRMSE between the simulated reflectance and measured reflectance were less than 0.042 and 11.1%, respectively. Next, we integrated the 3D radiative transfer model with 3D scenes to analyze the spectral response of maize canopy structure. The findings revealed that the near-infrared band was affected more by leaf area than leaf base angle, while the opposite is observed for the red-edge band. Furthermore, the middle layer contributed more to the canopy reflectance than either the upper or lower layers. Notably, two maize scenes where two structural parameters simultaneously change could elicit the same canopy spectra. The proposed method thus offers the dual advantages of rapid modeling and high efficiency, making it highly applicable for maize and other similar crops.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model
-
Retrieving the chlorophyll content of individual apple trees by reducing canopy shadow impact via a 3D radiative transfer model and UAV multispectral imagery
作者:Zhang, Chengjian;Chen, Zhibo;Chen, Riqiang;Zhang, Wenjie;Zhang, Chengjian;Chen, Riqiang;Zhang, Wenjie;Zhao, Dan;Yang, Guijun;Xu, Bo;Feng, Haikuan;Yang, Hao
关键词:Chlorophyll content; Shadows; Vegetation index (VI); Radiative transfer models (RTMs); Hybrid inversion model; Individual apple tree crown



