您好,欢迎访问浙江省农业科学院 机构知识库!

A highly efficient method for construction of rice artificial MicroRNA vectors

文献类型: 外文期刊

作者: Wang, Xuming 1 ; Yang, Yong 1 ; Yu, Chulang 1 ; Zhou, Jie 1 ; Cheng, Ye 1 ; Yan, Chengqi 1 ; Chen, Jianping 1 ;

作者机构: 1.Zhejiang Acad Agr Sci, Inst Virol & Biotechnol, MOA, Hangzhou 310021, Zhejiang, Peoples R China; Zhejiang Acad Agr Sci, Zhejiang Prov Key Lab Plant Virol, Hangzhou 310021, Zhejiang, Peoples R China

关键词: Artificial miRNA;Gene silencing;Oryza sativa;Vector construction

期刊名称:MOLECULAR BIOTECHNOLOGY ( 影响因子:2.695; 五年影响因子:2.303 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Artificial microRNA (amiRNA) has become a powerful tool for gene silencing in plants. A new method for easy and rapid construction of rice artificial miRNA vector is described. The procedure involved modification of the pCAMBIA1300-UR vector by insertion of a 'vector modification fragment'. This was prepared from the precursor of Os-amiR528 by eliminating the central miRNA-containing region while simultaneously creating an AfeI restriction site. The fragment was then introduced to the destination vector to produce a multipurpose 'Highly Efficient gene Silencing Compatible vector' (HESC vector). AfeI was used to produce linearized HESC vectors, and a blunt end PCR product that included amiRNA sequence was cloned into this site by a single ligation reaction to create the completed amiRNA vector. Tests showed that the method was highly efficient, and greatly reduced the time needed for vector construction and resulted in a DNA sequence identical to that of the current method, making it particularly suitable for use in a systems biology approach to functional genomic research.

  • 相关文献

[1]Specific Downregulation of the Bacterial-Type PEPC Gene by Artificial MicroRNA Improves Salt Tolerance in Arabidopsis. Wang, Fulin,Shi, Chunhai,Wang, Fulin,Liu, Renhu,Wu, Guanting,Lang, Chunxiu,Chen, Jinqing.

[2]ARGONAUTE SUBFAMILY GENES IN THE SMALL BROWN PLANTHOPPER, Laodelphax striatellus (HEMIPTERA: DELPHACIDAE). Zhou, Yan-Ru,Zhou, Yan-Ru,Li, Jun-Min,Sun, Zong-Tao,Xie, Li,Chen, Jian-Ping,Li, Lin-Ying.

[3]Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants. Xu, H. X.,Weng, X. Y.,Yang, Y.. 2007

[4]Expression patterns of defence genes and antioxidant defence responses in a rice variety that is resistant to leaf blast but susceptible to neck blast. Hao, Zhong N.,Wang, Lian P.,Tao, Rong X.. 2009

[5]Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Wang, Dekai,Pei, Kemei,Fu, Yaping,Sun, Zongxiu,Li, Sujuan,Liu, Heqin,Tang, Kan,Han, Bin,Tao, Yuezhi. 2007

[6]OspTAC2 encodes a pentatricopeptide repeat protein and regulates rice chloroplast development. Wang, Dekai,Liu, Heqin,Zhai, Guowei,Shao, Jianfeng,Tao, Yuezhi,Wang, Dekai,Liu, Heqin,Zhai, Guowei,Shao, Jianfeng,Tao, Yuezhi,Wang, Liangsheng. 2016

[7]Comparison between the resistance to blast in panicles exserted from the main culm and primary tillers as measured in six rice varieties. Hao, Zhongna,Wang, Lianping,Tao, Rongxiang,Li, Chunshou,Huang, Fudeng. 2014

[8]Influences of the disease resistance conferred by the individual transgenes, Pi-d2, Pi-d3 and Xa21, on the transgenic rice plants in yield and grain quality. Hao, Z. N.,Wang, L. P.,Tao, R. X.,Wang, J.,Wang, J.. 2009

[9]Expression of defense genes and activities of antioxidant enzymes in rice resistance to rice stripe virus and small brown planthopper. Hao, Zhongna,Wang, Lianping,He, Yueping,Liang, Jiangen,Tao, Rongxiang.

[10]A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice (Oryza sativa L.). Jin, QS,Waters, D,Cordeiro, GM,Henry, RJ,Reinke, RF.

[11]Rice ragged stunt oryzavirus: role of the viral spike protein in transmission by the insect vector. Zhou, GY,Lu, XB,Lu, HJ,Lei, JL,Chen, SX,Gong, ZX.

[12]A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. Chen, Jie,Shi, Yongfeng,Liu, Wenzheng,Fu, Yaping,Zhuang, Jieyun,Wu, Jianli,Chai, Rongyao. 2011

[13]A perfect marker for fragrance genotyping in rice. Bradbury, LMT,Henry, RJ,Jin, QS,Reinke, RF,Waters, DLE. 2005

[14]Anther culture in connection with induced mutations for rice improvement. Chen, QF,Wang, CL,Lu, YM,Shen, M,Afza, R,Duren, MV,Brunner, H. 2001

[15]Development and validation of a functional co-dominant SNP marker for the photoperiod thermo-sensitive genic male sterility pms3 (p/tms12-1) gene in rice. Qi, Yongbin,Wang, Linyou,Gui, Junmei,Zhang, Lixia,Liu, Qinglong,Wang, Jianjun. 2017

[16]Oryza sativa actin-interacting protein1 is required for rice growth by promoting actin turnover. Shi, Meng,Xie, Yurong,Zheng, Yiyan,Yang, Qiuying,Huang, Shanjin,Shi, Meng,Zheng, Yiyan,Wang, Junmin,Su, Yi. 2013

[17]Identification and regulation of host genes related to Rice stripe virus symptom production. Shi, Bingbin,Zhou, Hong,Jiang, Tong,Shi, Bingbin,Lin, Lin,Wang, Shihui,Rong, Lingling,Li, Junmin,Peng, Jiejun,Lu, Yuwen,Zheng, Hongying,Yang, Yong,Zhao, Jinping,Chen, Jianping,Yan, Fei,Guo, Qin,Chen, Zhuo,Song, Baoan.

[18]Expression of defense genes and antioxidant defense responses in rice resistance to neck blast at the preliminary heading stage and full heading stage. Hao, Zhongna,Wang, Lianping,Tao, Rongxiang,Huang, Fudeng.

[19]Expression of OsAMT1 (1.1-1.3) in rice varieties differing in nitrogen accumulation. Zhao, S. P.,Ye, X. Z.,Zhao, S. P.,Shi, W. M..

[20]Effectiveness in the field of Bt rice lines against target pests under various cultural regimes. Yang, Yajun,Xu, Hongxing,Zheng, Xusong,Tian, Junce,Lu, Zhongxian,Han, Hailiang,Wang, Guiyue,Lin, Yongjun,Lin, Yongjun.

作者其他论文 更多>>