文献类型: 外文期刊
作者: Liu, Qingyun 1 ; Wang, Zuchao 1 ; Long, Yuan 2 ; Zhang, Chi 2 ; Fan, Shuxiang 2 ; Huang, Wenqian 2 ;
作者机构: 1.China Univ Geosci Beijing, Sch Sci, Beijing 100083, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Intelligent Equipment Res Ctr, Beijing 100097, Peoples R China
3.Natl Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
4.Minist Agr, Key Lab Agriinformat, Beijing 100097, Peoples R China
5.Beijing Key Lab Intelligent Equipment Technol Agr, Beijing 100097, Peoples R China
关键词: Raman hyperspectral imaging; Coated maize seed; Variety classification; Variable selection; Machine learning algorithm
期刊名称:SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY ( 影响因子:4.831; 五年影响因子:4.073 )
ISSN: 1386-1425
年卷期: 2022 年 270 卷
页码:
收录情况: SCI
摘要: As an essential factor in quality assessment of maize seeds, variety purity profoundly impacts final yield and farmers' economic benefits. In this study, a novel method based on Raman hyperspectral imaging system was applied to achieve variety classification of coated maize seeds. A total of 760 maize seeds including 4 different varieties were evaluated. Raman spectral data of 400-1800 cm(-1) were extracted and preprocessed. Variable selection methods involved were modified competitive adaptive reweighted sampling (MCARS), successive projections algorithm (SPA), and their combination. In addition, MCARS was proposed for the first time in this paper as a stable search technology. The performance of support vector machine (SVM) models optimized by genetic algorithm (GA) was analyzed and compared with models based on random forest (RF) and back-propagation neural network (BPNN). Same models based on Vis-NIR spectral data were also established for comparison. Results showed that the MCARS-GA-SVM model based on Raman spectral data obtained the best performance with calibration accuracy of 99.29% and prediction accuracy of 100%, which were stable and easily replicated. In addition, the accuracy on the independent validation set was 96.88%, which proved that the model can be applied in practice. A more simplified MCARS-SPA-GA-SVM model, which contained only 3 variables, had more than 95% accuracy on each data set. This procedure can help to develop a real-time detection system to classify coated seed varieties with high accuracy, which is of great significance for assessing variety purity and increasing crop yield. (C) 2021 Elsevier B.V. All rights reserved.
- 相关文献
作者其他论文 更多>>
-
Combining dual-wavelength laser-induced fluorescence hyperspectral imaging with mutual information decomposition and redundancy elimination method to detect Aflatoxin B1 of individual maize kernels
作者:Fan, Yaoyao;Kang, Jian;Chen, Liping;Fan, Yaoyao;Yao, Xueying;Wang, Zheli;Long, Yuan;Chen, Liping;Huang, Wenqian;Tian, Xi;Tian, Xi
关键词:Dual-wavelength; Fluorescence hyperspectral imaging; Mutual information; Information decomposition; Maize kernels; Aflatoxin B1
-
Monitoring the interannual dynamic changes of soil organic matter using long-term Landsat images
作者:Liu, Chang;Liu, Chang;Zhang, Chi;Chen, Wentao;Qu, Xuzhou;Tang, Boyi;Ma, Kai;Gu, Xiaohe;Sun, Qian
关键词:Soil organic matter; Remote sensing; Machine learning; Transfer learning; Spatial-temporal change
-
Diffusive gradients in thin-films (DGT) for in situ measurement of neonicotinoid insecticides (NNIs) in waters
作者:Xiong, Junwu;Yi, Jiapei;Wang, Kang;Zhang, Chi;Chen, Wei;Qi, Shihua;Xiong, Junwu;Yi, Jiapei;Wang, Kang;Zhang, Chi;Chen, Wei;Qi, Shihua;Xiong, Junwu;Pu, Chang;Qian, Zhe;Chen, Wei;Qi, Shihua;Wang, Kang;Chen, Wei;Xu, Li;Liu, Wei;Chen, Wei;Chen, Wei;Chen, Wei;Zhang, Hao;Jones, Kevin C.;Zhang, Zulin
关键词:Neonicotinoid insecticides (NNIs); Passive sampling; Diffusive gradients in thin-films (DGT); Groundwater; Wastewater
-
Data Fusion Strategy for Nondestructive Detection of Aflatoxin B1 Content in Single Maize Kernel Using Dual-Wavelength Laser-Induced Fluorescence Hyperspectral Imaging
作者:Yao, Xueying;Zhao, Chunjiang;Tian, Xi;Yao, Xueying;Yao, Xueying;Fan, Yaoyao;Wang, Qingyan;Huang, Wenqian;Zhao, Chunjiang;Tian, Xi
关键词:Maize; Fluorescence hyperspectral imaging; Aflatoxin B1; Nondestructive detection; Data fusion strategy; Dual-wavelength laser-induced fluorescence
-
Detection of starch content in maize kernel based on Raman hyperspectral imaging technique
作者:Long, Yuan;Tang, Xiuying;Zhang, Bin;Long, Yuan;Wang, Qingyan;Huang, Wenqian;Long, Yuan;Wang, Qingyan;Huang, Wenqian
关键词:Maize; Starch; Raman hyperspectral imaging; Nondestructive detection
-
Development of a rapid detection method for maize seed purity using a modular high-throughput near-infrared non-destructive testing system
作者:Wang, Zheli;Chen, Liping;Wang, Zheli;Fan, Yaoyao;Tian, Xi;Long, Yuan;Huang, Wenqian;Chen, Liping
关键词:Maize seed; Purity; High-Throughput; Non-Destructive; Machine learning
-
Detection of Insect-Damaged Maize Seed Using Hyperspectral Imaging and Hybrid 1D-CNN-BiLSTM Model
作者:Wang, Zheli;Chen, Liping;Wang, Zheli;Fan, Shuxiang;An, Ting;Zhang, Chi;Chen, Liping;Huang, Wenqian
关键词:Maize seed; Insect infestation; Hyperspectral imaging; Deep learning; BiLSTM



