[1]Isolation of a Methylobacillus sp that degrades microcystin toxins associated with cyanobacteria. Hu, Liang Bin,Hu, Liang Bin,Yang, Jing Dong,Zhou, Wei,Yin, Yu Fen,Chen, Jian,Shi, Zhi Qi,Yang, Jing Dong.
[2]Expression, refolding, and characterization of recombinant thrombopoietin/stem cell factor fusion protein in Escherichia coli. Zang, Yuhui,Zhang, Xu,Jiang, Xiaoling,Li, Haoran,Zhu, Jie,Zhang, Chi,Peng, Wei,Qin, Junchuan.
[3]Investigations into the Effects of Microcystin-LR on the Growth and Antioxidant Enzymes in Chinese cabbage and Rape. XUE Yanfeng,LI Youqin,SHI Zhiqi,YI Neng,LI Huiming. 2010
[4]Investigations into the Effects of Microcystin-LR on the Growth and Antioxidant Enzymes in Chinese cabbage and Rape. Xue Yanfeng, I,Li Youqin, II,Shi Zhiqi,Yi Neng, III. 2010
[5]Responses and toxin bioaccumulation in duckweed (Lemna minor) under microcystin-LR, linear alkybenzene sulfonate and their joint stress. Wang, Zhi,Xiao, Bangding,Song, Lirong,Wang, Chunbo,Zhang, Junqian,Wang, Zhi,Zhang, Junqian.
[6]A Soil Water Simulation Model for Wheat Field with Temporary Ditches. Shi, Chunlin,Liu, Yang,Xuan, Shouli,Jin, Zhiqing. 2016
[7]A genome-wide analysis of wide compatibility in rice and the precise location of the S-5 locus in the molecular map. Liu, KD,Wang, J,Li, HB,Xu, CG,Liu, AM,Li, XH,Zhang, QF. 1997
[8]Simultaneous measurements of cations and anions using diffusive gradients in thin films with a ZrO-Chelex mixed binding layer. Wang, Yan,Ding, Shiming,Shi, Lei,Gong, Mengdan,Xu, Shiwei,Zhang, Chaosheng.
[9]Dissipation of chlorpyrifos and residue analysis in rice, soil and water under paddy field conditions. Zhang, Xiao,Shen, Yan,Yu, Xiang-yang,Liu, Xian-jin,Zhang, Xiao.
[10]Construction of high-throughput genotyped chromosome segment substitution lines in rice (Oryza sativa L.) and QTL mapping for heading date. Zhu, Jinyan,Wang, Jun,Yang, Jie,Zhong, Weigong,Zhu, Jinyan,Tao, Yajun,Zhou, Yong,Liang, Guohua,Niu, Yongchao,Jian, Jianbo,Tai, Shuaishuai,Li, Jun.
[11]A Soil Water Simulation Model for Wheat Field with Temporary Ditches. Chunlin Shi,Yang Liu,Shouli Xuan,Zhiqing Jin. 2016
[12]Enhancement of Salinity Tolerance during Rice Seed Germination by Presoaking with Hemoglobin. Xu, Sheng,Hu, Bing,He, Ziyi,Ma, Fei,Feng, Jianfei,Shen, Wenbiao,Yang, Jie. 2011
[13]Hydrogen-rich water alleviates salt stress in rice during seed germination. Xu, Sheng,Jiang, Yilong,Wang, Ning,Shen, Wenbiao,Xu, Sheng,Wang, Ren,Xu, Sheng,Wang, Ren,Zhu, Susong,Yang, Jie.
[14]Screening for cadmium tolerance of 21 cultivars from Italian ryegrass (Lolium multiflorum Lam) during germination. Fang, Zhigang,Hu, Zhaoyang,Zhao, Huihui,Yang, Lei,Lou, Laiqing,Cai, Qingsheng,Fang, Zhigang,Ding, Chenglong.
[15]Protective Effects of Blueberry Anthocyanins against H2O2-Induced Oxidative Injuries in Human Retinal Pigment Epithelial Cells. Huang, Wu-Yang,Wu, Han,Li, Da-Jing,Song, Jiang-Feng,Xiao, Ya-Dong,Liu, Chun-Quan,Zhou, Jian-Zhong,Huang, Wu-Yang,Sui, Zhong-Quan. 2018
[16]Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Rastogi, Anshu,Rastogi, Anshu,Zivcak, Marek,Sytar, Oksana,Brestic, Marian,Sytar, Oksana,Kalaji, Hazem M.,Kalaji, Hazem M.,He, Xiaolan,Mbarki, Sonia. 2017
[17]RNAi knockdown of rice SE5 gene is sensitive to the herbicide methyl viologen by the down-regulation of antioxidant defense. Xu, Sheng,Wang, Lijuan,Zhang, Bo,Han, Bin,Xie, Yanjie,Wang, Ning,Cui, Weiti,Shen, Wenbiao,Xu, Sheng,Wang, Lijuan,Zhang, Bo,Han, Bin,Xie, Yanjie,Wang, Ning,Cui, Weiti,Shen, Wenbiao,Xu, Sheng,Wang, Ren,Yang, Jie,Zhong, Weigong,Chen, Huiping.
[18]Nitrate Reductase-Dependent Nitric Oxide Production Is Involved in Microcystin-LR-Induced Oxidative Stress in Brassica rapa. Chen, Jian,Zhong, You Ming,Zhang, Hai Qiang,Shi, Zhi Qi,Chen, Jian,Zhong, You Ming,Zhang, Hai Qiang,Shi, Zhi Qi,Chen, Jian,Zhong, You Ming,Zhang, Hai Qiang,Shi, Zhi Qi,Zhang, Hai Qiang.
[19]THE GROWTH, LEAD ACCUMULATION AND OXIDATIVE STRESS RESPONSE OF Iris lactea var. chinensis UNDER LEAD STRESS. Yuan, Hai-yan,Huang, Su-zhen,Han, Yu-lin,Guo, Zhi.
[20]Overexpression of maize phosphoenolpyruvate carboxylase improves drought tolerance in rice by stabilization the function and structure of thylakoid membrane. Shen, W. J.,Chen, G. X.,Xu, J. G.,Jiang, Y.,Liu, L.,Gao, Z. P.,Ma, J.,Lv, C. F.,Chen, X.,Chen, T. H..