您好,欢迎访问山西省农业科学院 机构知识库!

Identification of Quantitative Trait Loci (QTLs) for Flowering Time Using SSR Marker in Maize under Water Stress

文献类型: 外文期刊

作者: Xiao, YN 1 ; Li, XH 2 ; Zhang, SH 2 ; Wang, XD 2 ; Li, MS 2 ; Zheng, YL 2 ;

作者机构: 1.Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China

2.Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China; Chinese Acad Agr Sci, Inst Crop Breeding & Cultivat, Beijing 100081, Peoples R China; AMBIONET China Lab, Minist Agr, Key Lab Crop Genet & Breeding, Beijing 100081, Peoples R China; Shanxi Acad Agr Sci, Wheat Breeding Inst, Linfen 041000, Peoples R China

关键词: Zea mays;drought tolerance;SSR;quantitative trait locus (QTL);flowering time;linkage map

期刊名称:KOREAN JOURNAL OF GENETICS ( 影响因子:0.091; 五年影响因子:0.305 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The selection of reduction of anthesis-silking interval (ASI) in maize breeding is an efficient way to develop maize varieties more tolerant to dry growing conditions. Characterization of the quantitative trait loci (QTL) that controlled the floweringtime will be helpful for selection in maize breeding. In this study, flowering time of individuals in a 234 F_2:3 family, derived from the cross between inbred lines X178 and B73, was evaluated under well-watered and water-stressed conditions at the same location. SSR (microsatellite) was used to identify flowering time QTL. The results showed that the broad-sense heritability for male flowering time (MFT), female flowering time (FFT) and ASI were 0.72, 0.72 - 0.74 and 0.40 - 0.42, respectively, and ASI was significantly correlated to FFT. Under water-stressed condition, 9, 6 and 6 QTLs were identified for MFT, FFT and ASI, respectively, and individual QTL accounted for approximately 2.88% - 31.65% of the phenotypic variation. Some QTLs for MFT were mapped overlapping with those for FFT and ASI. One QTL on chromosome 9 (near nc134) had the strongest effect on MFT, FTT and ASI. It was suggested that the epistasis contributed to the phenotypic variation of flowering time.

  • 相关文献

[1]Quantitative Trait Loci Mapping of Maize Yield and Its Components Under Different Water Treatments at Flowering Time. Lu, Gui-He,Tang, Ji-Hua,Yan, Jian-Bing,Ma, Xi-Qing,Li, Jian-Sheng,Chen, Shao-Jiang,Ma, Jian-Cang,Liu, Zhan-Xian,Li-Zhu, E.,Zhang, Yi-Rong,Dai, Jing-Rui.

[2]Molecular Mapping of the Major Resistance Quantitative Trait Locus qHS2.09 with Simple Sequence Repeat and Single Nucleotide Polymorphism Markers in Maize. Weng, Jianfeng,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Zhang, Degui,Bai, Li,Liu, Changlin,Zhang, Shihuang,Li, Xinhai,Liu, Xianjun,Wang, Zhenhua,Zhang, Lin,Wang, Jianjun.

[3]Expression of Foreign Genes Demonstrates the Effectiveness of Pollen-Mediated Transformation in Zea mays. Yang, Liyan,Cui, Guimei,Wang, Yixue,Hao, Yaoshan,Du, Jianzhong,Wang, Changbiao,Zhang, Huanhuan,Wu, Shu-Biao,Sun, Yi,Yang, Liyan,Zhang, Hongmei,Wu, Shu-Biao,Sun, Yi. 2017

[4]Fitness costs and stability of Cry1Ab resistance in sugarcane borer, Diatraea saccharalis (F.). Zhang, Liping,Leonard, B. Rogers,Huang, Fangneng,Zhang, Liping,Chen, Mao,Clark, Thomas,Anilkumar, Konasale. 2014

[5]Overexpression of a foxtail millet Acetyl-CoA carboxylase gene in maize increases sethoxydim resistance and oil content. Dong, Zhigang,Zhao, Huji,He, Junguang,Huai, Junling,Lin, Heng,Wang, Guoying,Dong, Zhigang,Zheng, Jun,Liu, Yunjun,Wang, Guoying. 2011

[6]Jasmonic acid is involved in the water-stress-induced betaine accumulation in pear leaves. Gao, XP,Wang, XF,Lu, YF,Zhang, LY,Shen, YY,Liang, Z,Zhang, DP. 2004

[7]QTL Mapping of Isoflavone, Oil and Protein Contents in Soybean (Glycine max L. Merr.). Liang Hui-zhen,Yu Yong-liang,Wang Shu-feng,Lian Yun,Wang Ting-feng,Wei Yan-li,Gong Peng-tao,Fang Xuan-jun,Liu Xue-yi,Zhang Meng-chen. 2010

[8]High efficiency organogenesis and analysis of genetic stability of the regenerants in Solanum melongena. Xing, Y.,Yu, Y.,Luo, X.,Zhao, B.,Guo, Y-D.,Zhang, J-N.. 2010

[9]An RNA Sequencing Transcriptome Analysis of Grasspea (Lathyrus Sativus L.) and Development of SSR and KASP Markers. Hao, Xiaopeng,Wang, Yan,Chang, Jianwu,Yang, Tao,Liu, Rong,Yao, Yang,Ren, Guixing,Zhang, Hongyan,Wang, Dong,Zong, Xuxiao,Hu, Jinguo,Burlyaeva, Marina. 2017

[10]与高梁A2类型细胞质雄性不育性连锁的SSR标记的初步鉴定. 赵秀娟,孙毅,仪治本. 2007

[11]基于SSR的中国糜子遗传多样性分析. 季煦,王瑞云,曳水瑛,刘晓欢,杨阳,刘笑瑜,连帅. 2015

[12]37份洋葱遗传多样性的RAPD和SSR分析. 翟亚辉,马蓉丽,成妍,吴海涛,张光星. 2013

[13]高粱SSR分子连锁图谱的构建. 段永红,孙毅,仪治本,钱锦. 2009

[14]与高粱A_2类型细胞质雄性不育性连锁的SSR标记的初步鉴定. 赵秀娟,孙毅,仪治本. 2007

[15]高粱A_2细胞质雄性不育恢复基因的SSR标记分析. 仪治本,梁小红,赵秀娟,段永红,孙毅. 2007

[16]线辣椒种质资源遗传多样性分析. 武国平,赵尊练,叶新华,谢振华,史联联,郭建伟. 2014

[17]山西谷子核心资源群体结构及主要农艺性状关联分析. 王海岗,温琪汾,穆志新,乔治军. 2019

[18]SSR分子标记技术在苹果种质资源及遗传育种研究中的应用. 侯丽媛,董艳辉,张春芬,肖蓉,邓舒,聂园军,赵菁,曹秋芬. 2019

[19]苦荞全基因组SSR位点特征分析与分子标记开发. 马名川,刘龙龙,刘璋,周建萍,南成虎,张丽君. 2021

[20]利用EST-SSR评估糜子资源遗传差异. 石甜甜,何杰丽,高志军,陈凌,王海岗,乔治军,王瑞云. 2019

作者其他论文 更多>>