您好,欢迎访问北京市农林科学院 机构知识库!

The spatial continuity study of NDVI based on Kriging and BPNN algorithm

文献类型: 外文期刊

作者: Yang, Yujian 1 ; Zhu, Jianhua 1 ; Zhao, Chunjiang 2 ; Liu, Shuyun 1 ; Tong, Xueqin 1 ;

作者机构: 1.Shandong Acad Agr Sci, S&T Informat & Engn Res Ctr, Jinan 250100, Peoples R China

2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

关键词: NDVI;Back Propagation Neural Network;Kriging;Spatial continuity surface

期刊名称:MATHEMATICAL AND COMPUTER MODELLING ( 影响因子:1.366; 五年影响因子:1.602 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Under the framework of the soil-wheat system, the sampling area was selected in the demonstration site of Lingxian country of Shandong province, Normalized Difference Vegetation Index (NDVI) of 195 sites were collected by GreenSeeker optical sensor based on the GPS localization data. The main objective of the paper developed the comparison study by Kriging and BPNN algorithm for NDVI continuity surface during wheat growth stage. The results showed that the strong variability existed in the spatial pattern of NDVI values, the structural factors' variability is 88.6%, indicated the physiological parameters of wheat growth stage mainly affected NDVI measure values on Kriging algorithm, for BPNN algorithm, its simulation results showed that the compact and continuity changes of NDVI values in case area. The spatial distribution trend of NDVI values, there is in accordance with the simulation results on the large scope for two algorithms, but BPNN algorithm has higher estimated value than Kriging algorithm, and the prediction value is higher in the west of the whole study area than the measured value corresponding algorithm structure and the approximation ability of BPNN algorithm. In a summary, whether algorithm structure characteristics, or the interpolation description, results confirmed that BPNN algorithm has the better accuracy and more advantage than Kriging algorithm in the study.

  • 相关文献

[1]基于支持向量回归(SVR)和多时相遥感数据的冬小麦估产. 黎锐,李存军,徐新刚,王纪华,杨小冬,黄文江,潘瑜春. 2009

[2]耕地轮作模式遥感监测. 顾晓鹤,潘瑜春,王堃,杨枫,黄文江. 2011

[3]基于新型植被指数的冬小麦覆盖度遥感估算. 陈召霞,徐新刚,徐良骥,杨贵军,邢会敏,贺鹏. 2016

[4]影响大豆NDVI的气象因素多元回归分析. 张智韬,兰玉彬,郑永军,陈立平,宋鹏. 2015

[5]基于小麦长势遥感监测的土壤氮素累积估测研究. 潘瑜春,王纪华,陆安祥,陆洲. 2007

[6]基于近地光谱探测技术的冬小麦变量施肥. 杨玮,王秀,马伟,李民赞. 2007

[7]土壤背景对冠层NDVI的影响分析. 唐怡,刘良云,黄文江,王纪华. 2006

[8]利用有效积温提高冬小麦估产精度的研究. 陈艳玲,顾晓鹤,董燕生,胡圣武,张秋阳,赵静. 2014

[9]基于多时相TM影像的冬小麦面积变化监测. 崔方宁,宋晓宇,孙宝生,王纪华. 2012

[10]基于变化向量分析的冬小麦长势变化监测研究. 顾晓鹤,宋国宝,韩立建,徐超,潘耀忠. 2008

[11]基于主动光源的归一化植被指数测定系统研究. 魏士平,陈彦,王秀,张睿. 2012

[12]田间作物NDVI测量仪可靠性分析及标定环境研究. . 2019

[13]基于多时相NDVI及特征波段的作物分类研究. 马丽,徐新刚,刘良云,黄文江,贾建华,程一沛. 2008

[14]基于变化向量分析的玉米收获期遥感监测. 王堃,顾晓鹤,程耀东,张竟成,王慧芳,齐迹. 2011

[15]基于PWM变量农药喷洒控制系统的研究. 张涛涛,张文爱,王秀. 2012

[16]利用多时相TM影像进行作物分类方法. 马丽,徐新刚,贾建华,黄文江,刘良云,程一沛. 2008

[17]北京山区植被覆盖动态变化遥感监测研究. 张本昀,喻铮铮,刘良云,张震宇,孙婷婷. 2008

[18]基于时间序列NDVI相似性分析的棉花估产. 高中灵,徐新刚,王纪华,靳华安,杨浩. 2012

[19]基于ESTARFM模型的区域农田高时空分辨率影像产生与应用. 陈梦露,李存军,官云兰,周静平,王道芸,罗正乾. 2019

[20]北京地区冬小麦冠层光谱数据与叶面积指数统计关系研究. 刘东升,李淑敏. 2008

作者其他论文 更多>>