您好,欢迎访问中国热带农业科学院 机构知识库!

HbMyb1, a Myb transcription factor from Hevea brasiliensis, suppresses stress induced cell death in transgenic tobacco

文献类型: 外文期刊

作者: Peng, Shi-Qing 1 ; Wu, Kun-Xin 1 ; Huang, Gui-Xiu 3 ; Chen, Shou-Cai 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Inst Trop Biosci & Biotechnol, Minist Agr, Key Lab Trop Biotechnol, Haikou 571101, Peoples R China

2.Chinese Acad Trop Agr Sci, Inst Rubber, Minist Agr, Key Lab Rubber Biol, Danzhou 571737, Peoples R China

3.Chinese Acad Trop Agr Sci, Inst Environm & Plant Protect, Haikou 571101, Peoples R China

关键词: Cell death;Hevea brasiliensis;Myb transcription factor;Tapping panel dryness

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Tapping panel dryness (TPD) is a complex physiological syndrome found widely in rubber tree (Hevea brasiliensis) plantations that causes severe yield loss in natural rubber-producing countries. In an earlier study, we confirmed that there is a negative correlation between HbMyb1 expression and TPD severity. To further investigate the function of HbMyb1 in TPD, HbMyb1 was over-expressed in tobacco controlled by a CaMV 35S promoter. In transgenic plants expressing HbMyb1, cell death induced by UV-B irradiation, paraquat and the hypersensitive reaction to necrotrophic fungal infection (Botrytis cinerea) was suppressed with a close correlation between HbMyb1 protein levels and the extent of suppression. In addition the nuclear condensation and degradation were observed in laticifer cells of TPD trees, while the nucleus of laticifer cells of healthy trees was morphologically normal. On the basis of the results described above, we propose that HbMyb1 maybe suppress stress induced cell death in rubber trees.

  • 相关文献

[1]Genome-wide identification and expression analysis of the metacaspase gene family in Hevea brasiliensis. Liu, Hui,Deng, Zhi,Li, Dejun,Chen, Jiangshu,Wang, Sen,Hao, Lili.

[2]Molecular characterization and expression analysis of the small GTPase ROP members expressed in laticifers of the rubber tree (Hevea brasiliensis). Qin, Yunxia,Huang, Yacheng,Fang, Yongjun,Qi, Jiyan,Tang, Chaorong,Huang, Yacheng. 2014

[3]Molecular characterization and expression analysis of two farnesyl pyrophosphate synthase genes involved in rubber biosynthesis in Hevea brasiliensis. Wu, Chuntai,Sun, Lina,Li, Yu,Zeng, Rizhong,Wu, Chuntai,Sun, Lina,Li, Yu,Zeng, Rizhong. 2017

[4]Molecular cloning, expression profiles, and characterization of a novel polyphenol oxidase (PPO) gene in Hevea brasiliensis. Li, Dejun,Deng, Zhi,Liu, Changren,Zhao, Manman,Guo, Huina,Liu, Hui,Liu, Changren,Guo, Huina,Xia, Zhihui. 2014

[5]Molecular cloning and expression of a novel MYB transcription factor gene in rubber tree. Qin, Bi,Zhang, Yu,Wang, Meng.

[6]Association of decreased expression of a Myb transcription factor with the TPD (tapping panel dryness) syndrome in Hevea brasiliensis. Chen, SC,Peng, SQ,Huang, GX,Wu, KX,Fu, XH,Chen, ZQ.

[7]橡胶间种百香果的不同栽培模式探讨. 吴斌,杨其军,朱文彬,黄东梅,马伏宁,詹儒林,蒋雄英,宋顺. 2021

[8]Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. Pirrello, Julien,Leclercq, Julie,Dessailly, Florence,Rio, Maryannick,Piyatrakul, Piyanuch,Montoro, Pascal,Piyatrakul, Piyanuch,Kuswanhadi, Kuswanhadi,Tang, Chaorong. 2014

[9]Regulation of MIR Genes in Response to Abiotic Stress in Hevea brasiliensis. Gebelin, Virginie,Leclercq, Julie,Montoro, Pascal,Hu, Songnian,Tang, Chaorong. 2013

[10]Optimizing Tapping-Tree Density of Rubber (Hevea brasiliensis) Plantations in South China. Qi, Dongling,Zhou, Jiannan,Xie, Guishui,Wu, Zhixiang.

[11]Development, characterization, genetic diversity and cross-species/genera transferability of ILP markers in rubber tree (Hevea brasiliensis). Li, Dejun,Deng, Zhi,Xia, Zhihui,Liu, Xianghong,Feng, Fuying.

[12]Development and characterization of intron-flanking EST-PCR markers in rubber tree (Hevea brasiliensis Muell. Arg.). Li, Dejun,Deng, Zhi,Liu, Xianghong,Xia, Zhihui,Dong, Junmei,Feng, Fuying.

[13]Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt. Wei, Yunxie,Liu, Guoyin,Wu, Chunjie,Liu, Wei,Zeng, Hongqiu,He, Chaozu,Shi, Haitao,Wei, Yunxie,Liu, Guoyin,Wu, Chunjie,Liu, Wei,Zeng, Hongqiu,He, Chaozu,Shi, Haitao,Liu, Wen,Hu, Wei.

[14]Transcriptome-Wide Identification and Characterization of MYB Transcription Factor Genes in the Laticifer Cells of Hevea brasiliensis. Wang, Ying,Zhan, Di-Feng,Li, Hui-Liang,Guo, Dong,Zhu, Jia-Hong,Peng, Shi-Qing,Zhan, Di-Feng. 2017

[15]Three MADS-box genes of Hevea brasiliensis expressed during somatic embryogenesis and in the laticifer cells. Li, Hui-Liang,Wang, Ying,Guo, Dong,Peng, Shi-Qing,Tian, Wei-Min. 2011

[16]Acyl-CoA-binding protein family members in laticifers are possibly involved in lipid and latex metabolism of Hevea brasiliensis (the Para rubber tree). Nie, Zhiyi,Wang, Yihang,Wu, Chuntai,Li, Yu,Kang, Guijuan,Qin, Huaide,Zeng, Rizhong,Nie, Zhiyi,Wang, Yihang,Wu, Chuntai,Li, Yu,Kang, Guijuan,Qin, Huaide,Zeng, Rizhong,Wang, Yihang. 2018

[17]The calcium-dependent protein kinase (CDPK) and CDPK-related kinase gene families in Hevea brasiliensis-comparison with five other plant species in structure, evolution, and expression. Xiao, Xiao-Hu,Sui, Jin-Lei,Qi, Ji-Yan,Fang, Yong-Jun,Tang, Chao-Rong,Yang, Meng,Hu, Song-Nian,Sui, Jin-Lei. 2017

[18]Molecular cloning, expression profiles and characterization of a novel translationally controlled tumor protein in rubber tree (Hevea brasiliensis). Li, Dejun,Deng, Zhi,Liu, Xianghong,Qin, Bi,Liu, Xianghong. 2013

[19]Overexpression of a Hevea brasiliensis ErbB-3 Binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis. Cheng, Han,Chen, Xiang,Zhu, Jianshun,Huang, Huasun. 2016

[20]A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). Tang, Chaorong,Qi, Jiyan,Li, Heping,Zhang, Cunliang,Wang, Yuekun. 2007

作者其他论文 更多>>