您好,欢迎访问江苏省农业科学院 机构知识库!

Repetitive prime-and-realign mechanism converts short capped RNA leaders into longer ones that may be more suitable for elongation during rice stripe virus transcription initiation

文献类型: 外文期刊

作者: Yao, Min 1 ; Zhang, Tianqi 1 ; Zhou, Tong 2 ; Zhou, Yijun 2 ; Zhou, Xueping 3 ; Tao, Xiaorong 1 ;

作者机构: 1.Nanjing Agr Univ, Dept Plant Pathol, Minist Educ, Key Lab Integrated Management Crop Dis & Pests, Nanjing 210095, Jiangsu, Peoples R China

2.Jiangsu Acad Agr Sci, Inst Plant Protect, Nanjing 210014, Peoples R China

3.Zhejiang Univ, Inst Biotechnol, State Key Lab Rice Biol, Hangzhou 310029, Zhejiang, Peoples R China

期刊名称:JOURNAL OF GENERAL VIROLOGY ( 影响因子:3.891; 五年影响因子:3.719 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Cucumber mosaic virus (CMV) RNAs were found to serve as cap donors for rice stripe virus (RSV) transcription initiation during their co-infection of Nicotiana benthamiana. The 5' end of CMV RNAs was cleaved preferentially at residues that had multiple-base complementarity to the 3' end of the RSV template. The length requirement for CMV capped primers to be suitable for elongation varied between 12 and 20 nt, and those of 12-16 nt were optimal for elongation and generated more CMV-RSV chimeric mRNA transcripts. The original cap donors that were cleaved from CMV RNAs were predominantly short (10-13 nt). However, the CMV capped RNA leaders that underwent long-distance elongation were found to contain up to five repetitions of additional AC dinucleotides. Sequence analysis revealed that these AC dinucleotides were used to increase the size of short cap donors in multiple prime-and-realign cycles. Each prime-andrealign cycle added an AC dinucleotide onto the capped RNA leaders; thus, the original cap donors were gradually converted to longer capped RNA leaders (of 12-20 nt). Interestingly, the original 10 nt (or 11 nt) cap donor cleaved from CMV RNA1/2 did not undergo direct extension; only capped RNA leaders that had been increased to ≥12 nt were used for direct elongation. These findings suggest that this repetitive priming and realignment may serve to convert short capped CMV RNA leaders into longer, more suitable sizes to render a more stabilized transcription complex for elongation during RSV transcription initiation.

  • 相关文献
作者其他论文 更多>>