您好,欢迎访问中国热带农业科学院 机构知识库!

Identification of potential antisense transcripts in rice using conventional microarray

文献类型: 外文期刊

作者: Gan, Qiang 1 ; Li, Dejun 1 ; Liu, Guozhen 5 ; Zhu, Lihuang 1 ;

作者机构: 1.Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Plant Genom, Beijing 100101, Peoples R China

2.Chinese Acad Sci, Inst Genet & Dev Biol, Natl Plant Gene Res Ctr Beijing, Beijing 100101, Peoples R China

3.Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China

4.Chinese Acad Trop Agr Sci, Rubber Res Inst, Danzhou 571737, Hainan, Peoples R China

5.Agr Univ Hebei, Coll Life Sci, Baoding 071001, Hebei, Peoples R China

关键词: Conventional microarray;Labeling;Natural antisense transcripts;Rice;Second strand cDNA

期刊名称:MOLECULAR BIOTECHNOLOGY ( 影响因子:2.695; 五年影响因子:2.303 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Natural antisense transcripts (NATs) are endogenous transcripts that contain reverse complementary sequences to other RNAs (usually called sense transcripts). NATs regulate the expression of sense transcripts in a wide range of species. The identification and analysis of NATs are the prerequisite to elucidate their functions. Microarray is a genome-wide method to detect gene expression. However, conventional microarrays do not contain the specific probes of NATs; thus, they cannot be utilized to detect NATs. In this article, we developed a novel method to identify potential NATs with the conventional microarrays. In this method of our study, we labeled the first strand cDNA from one sample with Cy5 and labeled the second strand cDNA from another sample with Cy3, and then hybridized these labeled samples with oligonucleotide microarray. Using this method, we identified 920 potential NATs in rice variety Nipponbare. Among these potential NATs, 88 of them were confirmed by either full-length cDNA or orientated ESTs (expressed sequence tags). This is the first time that a conventional oligonucleotide microarray was employed to identify NATs in rice.

  • 相关文献

[1]OsSIDP366, a DUF1644 gene, positively regulates responses to drought and salt stresses in rice. Guo, Chiming,Luo, Chengke,Guo, Lijia,Li, Min,Zhang, Yuxia,Chen, Liang,Guo, Xiaoling,Wang, Liangjiang,Luo, Chengke,Guo, Lijia. 2016

[2]Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses. Yu, Y.,Cui, Y. C.,Ren, C.,Rocha, P. S. C. F.,Wang, M. L.,Xia, X. J.,Yu, Y.,Ren, C.,Peng, M.,Xu, G. Y.. 2016

[3]Metabolite profiles of rice cultivars containing bacterial blight-resistant genes are distinctive from susceptible rice. Huang, Xin,Zhu, Shuifang,Wu, Jiao,Yu, Haichuan,Wu, Jiao,Dai, Haofu,Mei, Wenli,Peng, Ming. 2012

[4]Suppression of expression of the putative receptor-like kinase gene NRRB enhances resistance to bacterial leaf streak in rice. Guo, Lijia,Guo, Chiming,Li, Min,Wang, Wujing,Luo, Chengke,Zhang, Yuxia,Chen, Liang,Guo, Lijia.

[5]Comparative Transcriptional Profiling of Melatonin Synthesis and Catabolic Genes Indicates the Possible Role of Melatonin in Developmental and Stress Responses in Rice. Wei, Yunxie,Zeng, Hongqiu,He, Chaozu,Shi, Haitao,Hu, Wei,Chen, Lanzhen. 2016

[6]Isolation and Functional Characterization of Bidirectional Promoters in Rice. Wang, Rui,Zhu, Menglin,Yang, Mei,Zhou, Fei,Chen, Hao,Lin, Yongjun,Wang, Rui,Zhu, Menglin,Yang, Mei,Zhou, Fei,Chen, Hao,Lin, Yongjun,Yan, Yan. 2016

[7]Distribution of selenium and cadmium in soil-rice system of selenium-rich area in Hainan, China. Wang, Dengfeng,Wei, Zhiyuan,Qi, Zhiping,Tang, Shumei. 2014

[8]A precise and consistent assay for major wall polymer features that distinctively determine biomass saccharification in transgenic rice by near-infrared spectroscopy. Huang, Jiangfeng,Li, Ying,Wang, Yanting,Chen, Yuanyuan,Liu, Mingyong,Wang, Youmei,Zhang, Ran,Zhou, Shiguang,Li, Jingyang,Tu, Yuanyuan,Hao, Bo,Peng, Liangcai,Xia, Tao,Huang, Jiangfeng,Li, Ying,Wang, Yanting,Chen, Yuanyuan,Liu, Mingyong,Wang, Youmei,Zhang, Ran,Zhou, Shiguang,Li, Jingyang,Tu, Yuanyuan,Hao, Bo,Peng, Liangcai,Xia, Tao,Huang, Jiangfeng,Li, Ying,Wang, Yanting,Chen, Yuanyuan,Liu, Mingyong,Wang, Youmei,Zhang, Ran,Zhou, Shiguang,Li, Jingyang,Tu, Yuanyuan,Peng, Liangcai,Liu, Mingyong,Hao, Bo,Xia, Tao,Li, Jingyang. 2017

[9]Distribution of copper in soil and rice system of Hainan Island, China. Wang Dengfeng,Huang Haijie,Feng Huande,Han Miaojie,Qi Zhiping,Wang Hua. 2016

[10]The rice gene OsZFP6 functions in multiple stress tolerance responses in yeast and Arabidopsis. Guan, Qing-jie,Bu, Qing-yun,Wang, Zhen-yu,Wang, Li-feng,Guan, Qing-jie.

[11]Identification of quantitative trait loci for the dead leaf rate and the seedling dead rate under alkaline stress in rice. Qi, Dongling,Cao, Guilan,Han, Longzhi,Qi, Dongling,Guo, Guizhen,Zhang, Junguo,Zhang, Sanyuan,Han, Longzhi,Lee, Myung-Chul,Suh, Seok-Cheol,Zhou, Qingyang. 2008

[12]Comparison of the activities of hydrophilic anthocyanins and lipophilic tocols in black rice bran against lipid oxidation. Zhang, Xiumei,Zhang, Xiumei,Shen, Yixiao,Prinyawiwatkul, Witoon,King, Joan M.,Xu, Zhimin.

[13]Functional characterization of rice OsDof12. Li, Dejun,Yang, Chunhua,Li, Xiaobing,Gan, Qiang,Zhao, Xianfeng,Zhu, Lihuang,Li, Dejun,Yang, Chunhua,Li, Xiaobing,Gan, Qiang,Zhao, Xianfeng,Zhu, Lihuang,Li, Dejun,Yang, Chunhua,Gan, Qiang.

作者其他论文 更多>>