您好,欢迎访问中国热带农业科学院 机构知识库!

Molecular characterization of a novel 14-3-3 protein gene (Hb14-3-3c) from Hevea brasiliensis

文献类型: 外文期刊

作者: Yang, Zi-Ping 1 ; Li, Hui-Liang 1 ; Guo, Dong 1 ; Tian, Wei-Min 2 ; Peng, Shi-Qing 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Key Lab Trop Crop Biotechnol, Minist Agr, Inst Trop Biosci & Biotechnol, Haikou 571101, Peoples R China

2.Chinese Acad Trop Agr Sci, Key Lab Rubber Biol, Minist Agr, Inst Rubber, Danzhou 571737, Peoples R China

关键词: 14-3-3 protein;Hevea brasiliensis;Jasmonate;Heavy metal ions;Interaction partner

期刊名称:MOLECULAR BIOLOGY REPORTS ( 影响因子:2.316; 五年影响因子:2.357 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The cDNA encoding a 14-3-3 protein, designated as Hb14-3-3c, was isolated from Hevea brasiliensis. Hb14-3-3c was 1,269 bp long containing a 795 bp open reading frame encoding a putative protein of 264 amino acids, flanked by a 146 bp 5'UTR and a 328 bp 3' UTR. The predicted molecular mass of Hb14-3-3c is 29.67 kDa, with an isoelectric point of 4.52 and the deduced protein showed high similarity to the 14-3-3 protein from other plant species. Expression analysis revealed more significant accumulation of Hb14-3-3c transcripts in latex than in leaves, buds and flowers. The transcription of Hb14-3-3c in latex was induced by jasmonate and ethephon. Overproduction of recombinant Hb14-3-3c protein gave the Escherichia coli cells more tolerance on Co2+, Cu2+ and Zn2+. Through yeast two-hybrid screening, 11 interaction partners of the Hb14-3-3c, which are involved in rubber biosynthesis, stress-related responses, defence etc., were identified in rubber tree latex. Taking these data together, it is proposed that the Hb14-3-3c may participate in regulation of rubber biosynthesis. Thus, the results of this study provide novel insights into the 14-3-3 signaling related to rubber biosynthesis, stress-related responses in rubber tree.

  • 相关文献

[1]Cloning and molecular characterization of a cDNA encoding a small GTPase from Hevea brasiliensis. Li, H. L.,Guo, D.,Peng, S. Q.,Tian, W. M.. 2013

[2]橡胶间种百香果的不同栽培模式探讨. 吴斌,杨其军,朱文彬,黄东梅,马伏宁,詹儒林,蒋雄英,宋顺. 2021

[3]Cloning and characterization of HbJAZ1 from the laticifer cells in rubber tree (Hevea brasiliensis Muell. Arg.). Tian, W. -W.,Huang, W. -F.,Zhao, Y..

[4]Transcriptome-Wide Identification and Characterization of MYB Transcription Factor Genes in the Laticifer Cells of Hevea brasiliensis. Wang, Ying,Zhan, Di-Feng,Li, Hui-Liang,Guo, Dong,Zhu, Jia-Hong,Peng, Shi-Qing,Zhan, Di-Feng. 2017

[5]Three MADS-box genes of Hevea brasiliensis expressed during somatic embryogenesis and in the laticifer cells. Li, Hui-Liang,Wang, Ying,Guo, Dong,Peng, Shi-Qing,Tian, Wei-Min. 2011

[6]Acyl-CoA-binding protein family members in laticifers are possibly involved in lipid and latex metabolism of Hevea brasiliensis (the Para rubber tree). Nie, Zhiyi,Wang, Yihang,Wu, Chuntai,Li, Yu,Kang, Guijuan,Qin, Huaide,Zeng, Rizhong,Nie, Zhiyi,Wang, Yihang,Wu, Chuntai,Li, Yu,Kang, Guijuan,Qin, Huaide,Zeng, Rizhong,Wang, Yihang. 2018

[7]The calcium-dependent protein kinase (CDPK) and CDPK-related kinase gene families in Hevea brasiliensis-comparison with five other plant species in structure, evolution, and expression. Xiao, Xiao-Hu,Sui, Jin-Lei,Qi, Ji-Yan,Fang, Yong-Jun,Tang, Chao-Rong,Yang, Meng,Hu, Song-Nian,Sui, Jin-Lei. 2017

[8]Molecular cloning, expression profiles and characterization of a novel translationally controlled tumor protein in rubber tree (Hevea brasiliensis). Li, Dejun,Deng, Zhi,Liu, Xianghong,Qin, Bi,Liu, Xianghong. 2013

[9]Overexpression of a Hevea brasiliensis ErbB-3 Binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis. Cheng, Han,Chen, Xiang,Zhu, Jianshun,Huang, Huasun. 2016

[10]A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). Tang, Chaorong,Qi, Jiyan,Li, Heping,Zhang, Cunliang,Wang, Yuekun. 2007

[11]Comparative Proteomics of Rubber Latex Revealed Multiple Protein Species of REF/SRPP Family Respond Diversely to Ethylene Stimulation among Different Rubber Tree Clones. Tong, Zheng,Wang, Dan,Sun, Yong,Yang, Qian,Meng, Xueru,Wang, Limin,Wang, Xuchu,Feng, Weiqiang,Wang, Xuchu,Li, Ling,Wurtele, Eve Syrkin,Wang, Xuchu,Li, Ling,Wurtele, Eve Syrkin,Li, Ling. 2017

[12]Characterization of HbWRKY1, a WRKY transcription factor from Hevea brasiliensis that negatively regulates HbSRPP. Wang, Ying,Guo, Dong,Li, Hui-Liang,Peng, Shi-Qing,Wang, Ying,Peng, Shi-Qing. 2013

[13]Laticifer differentiation in Hevea brasiliensis: Induction by exogenous jasmonic acid and linolenic acid. Hao, BZ,Wu, JL. 2000

[14]Molecular mechanism of ethylene stimulation of latex yield in rubber tree (Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis. Liu, Jin-Ping,Zhuang, Yu-Fen,Guo, Xiu-Li,Li, Yi-Jian. 2016

[15]Genome-wide identification and expression analysis of the metacaspase gene family in Hevea brasiliensis. Liu, Hui,Deng, Zhi,Li, Dejun,Chen, Jiangshu,Wang, Sen,Hao, Lili.

[16]Differential gene expression profiles in latex from Hevea brasiliensis between self-rooting juvenile and donor clones. Li, Hui-Liang,Guo, Dong,Peng, Shi-Qing.

[17]Effects of powdery mildew infection on chloroplast and mitochondrial functions in rubber tree. Wang, Li-Feng,Wang, Meng,Zhang, Yu.

[18]Expression Profiles, Characterization and Function of HbTCTP in Rubber Tree (Hevea brasiliensis). Deng, Zhi,Chen, Jiangshu,Liu, Changren,Liu, Hui,Yang, Hong,Li, Dejun,Chen, Jiangshu,Liu, Changren,Xia, Zhihui,Leclercq, Julie,Montoro, Pascal,Zhou, Zhuangzhi,Zhou, Zhuangzhi. 2016

[19]Age-dependent and jasmonic acid-induced laticifer-cell differentiation in anther callus cultures of rubber tree. Tan, Deguan,Sun, Xuepiao,Zhang, Jiaming. 2014

[20]The SWEET gene family in Hevea brasiliensis - its evolution and expression compared with four other plant species. Sui, Jin-Lei,Sui, Jin-Lei,Xiao, Xiao-Hu,Qi, Ji-Yan,Fang, Yong-Jun,Tang, Chao-Rong,Sui, Jin-Lei,Xiao, Xiao-Hu,Qi, Ji-Yan,Fang, Yong-Jun,Tang, Chao-Rong. 2017

作者其他论文 更多>>