您好,欢迎访问吉林省农业科学院 机构知识库!

Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply

文献类型: 外文期刊

作者: Cai, Hongguang 1 ; Chu, Qun 1 ; Yuan, Lixing 1 ; Liu, Jianchao 1 ; Chen, Xiaohui 1 ; Chen, Fanjun 1 ; Mi, Guohua 1 ; Zhan 1 ;

作者机构: 1.China Agr Univ, Coll Resource & Environm Sci, MOE, Key Lab Plant Soil Interact, Beijing 100193, Peoples R China

2.Jilin Acad Agr Sci, Res Ctr Agr Environm & Resources, Changchun 130033, Peoples R China

关键词: chlorophyll;crop yield;deficiency;effects;flowering;flowering date;genetic improvement;growth;identification;leaf area;loci;maize;mineral deficiencies;nitrogen;nutrient deficiencies;phosphorus;plant development;quantitative trait loci;quantitative traits;roots;yields;Zea;Zea mays;Zea;Poaceae;Cyperales;monocotyledons;angiosperms;Spermatophyta;plants;eukaryotes;anthesis;corn

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: To investigate responses to nitrogen and phosphorus stress, 218 recombinant inbred maize (Zea mays L.) lines were grown under low nitrogen, low phosphorus, and control (i.e., nitrogen and phosphorus sufficient) conditions and evaluated at the silking stage for various traits, including leaf area, leaf chlorophyll content, flowering time, the interval between anthesis and silking, and grain yield. Among the 83 quantitative trait loci (QTL) detected, 29 were for controls, another 29 were for low nitrogen, and 25 were low phosphorus. These loci indicate that there were both common and specific genetic mechanisms underlying the investigated traits. Overlapping QTL for leaf size (area, length, and width) leaf chlorophyll level, flowering time, anthesis-silking interval, and grain yield were located at chromosome bin 2.03/2.04, bin 2.06/2.07/2.08, bin 4.01/4.02, bin 5.03/5.04, bin 6.07, bin 9.03, and bin 10.03/10.04. Many of these loci overlapped with previously reported loci controlling root growth as well as tolerance or response to nutrient deficiency. These QTL identify chromosome regions as targets for genetic improvement of low nitrogen and low phosphorus tolerance.

  • 相关文献

[1]Genetic variability for root hair traits as related to phosphorus status in soybean. Wang, LD,Liao, H,Yan, XL,Zhuang, BC,Dong, YS.

[2]Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize. Gu, Riliang,Chen, Fanjun,Long, Lizhi,Cai, Hongguang,Liu, Zhigang,Yang, Jiabo,Wang, Lifeng,Mi, Guohua,Zhang, Fusuo,Yuan, Lixing,Gu, Riliang,Li, Huiyong,Li, Junhui,Cai, Hongguang,Wang, Lifeng,Li, Huiyong. 2016

[3]Estimating nutrient uptake requirements for rice in China. Xu, Xinpeng,He, Ping,Zhao, Shicheng,Qiu, Shaojun,Zhou, Wei,Xie, Jiagui,Hou, Yunpeng,He, Ping,Pampolino, Mirasol F.,Johnston, Adrian M..

[4]Identification of QTLs for plant height, ear height and grain yield in maize (Zea mays L.) in response to nitrogen and phosphorus supply. Cai, Hongguang,Chu, Qun,Gu, Riliang,Yuan, Lixing,Liu, Jianchao,Chen, Fanjun,Mi, Guohua,Zhang, Fusuo,Cai, Hongguang,Zhang, Xiuzhi.

[5]Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality. Hu, Lanjuan,Li, Ning,Xu, Chunming,Zhong, Silin,Yang, Jingjing,Zhou, Tianqi,Yuliang, Anzhi,Wu, Ying,Liu, Bao,Zhong, Silin,Chen, Yun-Ru,Lin, Xiuyun,Cao, Xiaofeng,Cao, Xiaofeng,Zemach, Assaf,Rustgi, Sachin,von Wettstein, Diter,Rustgi, Sachin,von Wettstein, Diter,Rustgi, Sachin,von Wettstein, Diter.

[6]Carbon and nitrogen allocations in corn grown in Central and Northeast China: different responses to fertilization treatments. Mia Hui-tian,Lu Jia-long,Mia Hui-tian,Xu Ming-gang,Zhang Wen-ju,Huang Shao-min,Peng Chang,Chen Li-ming. 2015

[7]Effect of 15-Year-Long Fertilization on Potassium Quantity/Intensity Relationships in Black Soil in Northeastern China. Zhang, Huimin,Xu, Minggang,Zhu, Ping,Peng, Chang. 2011

[8]Nutrient Uptake and Leaching from Soil Amended with Cattle Manure and Nitrapyrin. Luo, Yang,Benke, Monica B.,Hao, Xiying,Luo, Yang. 2017

[9]Apparent metabolizable and net energy values of corn and soybean meal for broiler breeding cocks. Liu, W.,Liu, G. H.,Liao, R. B.,Chang, Y. L.,Huang, X. Y.,Wu, Y. B.,Yan, H. J.,Cai, H. Y.,Yang, H. M..

[10]A screening method for detecting simple sequence repeat (SSR) polymorphism of Zea mays using high-resolution melting-curve analysis. Jiang, Y.,Tan, H.,Li, Y. D.,Yu, R. H.,Wang, S.,Li, X. H.,Shan, X. H.. 2011

[11]Overexpression of the maize ZmAMT1;1a gene enhances root ammonium uptake efficiency under low ammonium nutrition. Zhao, Yang,Liu, Zhi,Duan, Fengying,An, Xia,Gu, Riliang,Wang, Zhangkui,Chen, Fanjun,Yuan, Lixing,Duan, Fengying,Liu, Xiangguo,Hao, Dongyun. 2018

[12]Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines. Min, Haowei,Chen, Chengxuan,Wei, Shaowei,Shang, Xiaoling,Sun, Meiyun,Xia, Ran,Chen, Huabang,Xie, Qi,Min, Haowei,Chen, Chengxuan,Wei, Shaowei,Shang, Xiaoling,Sun, Meiyun,Xia, Ran,Chen, Huabang,Xie, Qi,Liu, Xiangguo,Hao, Dongyun. 2016

[13]Affinity chromatography revealed insights into unique functionality of two 14-3-3 protein species in developing maize kernels. Liu, Xiangguo,Yin, Yuejia,Han, Siping,Liu, Yang,Hao, Dongyun,Dou, Yao,Hao, Dongyun,Lu, Yang.

[14]Long-Term Fertilizer Experiment Network in China: Crop Yields and Soil Nutrient Trends. Poulton, Paul,Powlson, David,Todd, Alan,Payne, Roger,Zhao, Bing-qiang,Li, Xiu-ying,Li, Xiao-ping,Shi, Xiao-jun,Huang, Shao-min,Wang, Bo-ren,Zhu, Ping,Yang, Xue-yun,Liu, Hua,Chen, Yi.

[15]Low-nitrogen stress tolerance and nitrogen agronomic efficiency among maize inbreds: comparison of multiple indices and evaluation of genetic variation. Li, Xinhai,Li, Mingshun,Zhang, Degui,Hao, Zhuanfang,Weng, Jianfeng,Xu, Yunbi,Bai, Li,Zhang, Shihuang,Xie, Chuanxiao,Wu, Yongshen,Liu, Wenguo,Xu, Yunbi,Xu, Yunbi.

[16]Quantitative trait loci for cold tolerance of rice recombinant inbred lines in low temperature environments. Jiang, Wenzhu,Pan, Hong-Yu,Du, Xinglin,Jin, Yong-Mei,Lee, Joohyun,Lee, Kang-Ie,Piao, Rihua,Koh, Hee-Jong,Jin, Yong-Mei,Lee, Joohyun,Lee, Kang-Ie,Piao, Rihua,Koh, Hee-Jong,Han, Longzhi,Shin, Jin-Chul,Jin, Rong-De,Cao, Tiehua. 2011

[17]Carbon and nitrogen pools in different aggregates of a Chinese Mollisol as influenced by long-term fertilization. Chen, Ying,Zhang, Xudong,He, Hongbo,Xie, Hongtu,Yan, Ying,Zhang, Xudong,Chen, Ying,Zhu, Ping,Ren, Jun,Wang, Lichun.

[18]Long-term fertilization effects on carbon and nitrogen in particle-size fractions of a Chinese Mollisol. Yan, Y.,He, H.,Zhang, X.,Chen, Y.,Xie, H.,Bai, Z.,Yan, Y.,Zhang, X.,Chen, Y.,Zhu, P.,Ren, J.,Wang, L.. 2012

[19]Fate of applied urea N-15 in a soil-maize system as affected by urease inhibitor and nitrification inhibitor. Zhang, L.,Wu, Z.,Jiang, Y.,Chen, L.,Song, Y.,Zhang, L.,Wang, L.,Xie, J.,Ma, X.. 2010

[20]Nitrogen manipulation affects leaf senescence during late seed filling in soybean. Islam, Md. Matiul,Islam, Md. Matiul,Ishibashi, Yushi,Iwaya-Inoue, Mari,Nakagawa, Andressa C. S.,Tomita, Yuki,Zhao, Xin,Arima, Susumu,Zheng, Shao-Hui.

作者其他论文 更多>>