您好,欢迎访问中国热带农业科学院 机构知识库!

Isolation and characterization of a FLOWERING LOCUS T homolog from pineapple (Ananas comosus (L.) Merr)

文献类型: 外文期刊

作者: Lv, LingLing 2 ; Duan, Jun 1 ; Xie, JiangHui 2 ; Wei, ChangBin 2 ; Liu, Yuge 2 ; Liu, ShengHui 2 ; Sun, GuangMing 2 ;

作者机构: 1.Chinese Acad Sci, S China Bot Garden, Guangzhou 510650, Guangdong, Peoples R China

2.Chinese Acad Trop Agr Sci, S Subtrop Crops Res Inst, Zhanjiang 524091, Guangdong, Peoples R China

关键词: Characterization;Flower development;FT;Isolation;Pineapple;Transformation

期刊名称:GENE ( 影响因子:3.688; 五年影响因子:3.329 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: FLOWERING LOCUS T (FT)-like genes are crucial regulators of flowering in angiosperms. A homolog of FT, designated as AcFT (GenBank ID: HQ343233), was isolated from pineapple cultivar Comte de Paris by reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The cDNA sequence of AcFT is 915. bp in length and contains an ORF of 534. bp, which encodes a protein of 177 aa. Molecular weight was 19.9. kDa and isoelectric point was 6.96. The deduced protein sequence of AcFT was 84% and 82% identical to homologs encoded by CgFT in Cymbidium goeringii and OgFT in Oncidium Gower Ramsey respectively. Quantitative real-time PCR (qRT-PCR) analyses showed that the expression of AcFT was high in flesh and none in leaves. qRT-PCR analyses in different stages indicated that the expression of AcFT reached the highest level on 40 d after flower inducing, when the multiple fruit and floral organs were forming. The 35S::. AcFT transgenic Arabidopsis plants flowered earlier and had more inflorescences or branches than wild type plants.

  • 相关文献

[1]Cloning and Expression Analysis of a PISTILLATA Homologous Gene from Pineapple (Ananas comosus L. Merr). Lv, Ling-Ling,Xie, Jiang-Hui,Liu, Yu-Ge,Wei, Chang-Bin,Liu, Sheng-Hui,Sun, Guang-Ming,Duan, Jun,Zhang, Jian-Xia. 2012

[2]A SIMPLE AND EFFICIENT METHOD FOR ISOLATION OF PINEAPPLE PROTOPLASTS. Zhao, Weifeng,Wei, Changbin,Sun, Guangming,Zhao, Weifeng,Yang, Wenxiu. 2011

[3]Volatile Organic Compound Emissions from Different Stages of Cananga odorata Flower Development. Qin, Xiao-Wei,Hao, Chao-Yun,He, Shu-Zhen,Wu, Gang,Tan, Le-He,Xu, Fei,Hu, Rong-Suo,Qin, Xiao-Wei,Hao, Chao-Yun,Tan, Le-He,He, Shu-Zhen,Tan, Le-He,Xu, Fei,Hu, Rong-Suo.

[4]Cloning and expression analysis of a partial LEAFY homologue from pineapple (Ananas comosus (L.) Merr.). Lv Lingling,Sun Guangming,Zhang Jianxia,Zeng Songjun,Duan Jun,Lv Lingling,Xie Jianghui,Liu Shenghui,Liu Yuge,Wei Changbin,Lv Lingling,Sun Guangming. 2011

[5]Effects of wax treatment on quality and postharvest physiology of pineapple fruit in cold storage. Hu, Huigang,Li, Xueping,Chen, Weixin,Hu, Huigang,Dong, Chen. 2011

[6]Aroma Volatile Compounds from Two Fresh Pineapple Varieties in China. Zheng, Liang-Yong,Sun, Guang-Ming,Liu, Yu-Ge,Lv, Ling-Ling,Wei, Chang-Bin,Yang, Wen-Xiu,Zhao, Wei-Feng. 2012

[7]Comparisons and Correlations of Phenolic Profiles and Anti-oxidant Activities of Seventeen Varieties of Pineapple. Du, Liqing,Sun, Guangming,Zhang, Xiumei,Liu, Yuge,Prinyawiwatkul, Witoon,Xu, Zhimin,Shen, Yixiao. 2016

[8]Characteristic Aroma Compounds from Different Pineapple Parts. Wei, Chang-Bin,Liu, Sheng-Hui,Liu, Yu-Ge,Lv, Ling-Ling,Sun, Guang-Ming,Yang, Wen-Xiu.

[9]Changes in Sucrose Content and Related Enzyme Activities during Pineapple Inflorescence Development. Lu, Xinhua,Sun, Guangmin,Zhang, Xiumei,Dou, Meian. 2011

[10]Phylogeography of pink pineapple mealybugs, Dysmicoccus brevipes (Cockerell) reveals the history of pineapple introduction and cultivation in China. He, Y. B.,Zhan, R. L.,Sun, G. M.,Wu, J. B.,Zhao, Y. L.. 2015

[11]Genetic Diversity in Various Accessions of Pineapple [Ananas comosus (L.) Merr.] Using ISSR and SSR Markers. He, Jun-hu,Chen, Hua-rui,Chen, Ye-yuan,Qiao, Fei,Wang, Jian-sheng. 2017

[12]Changes in endogenous hormone concentrations during inflorescence induction and development in pineapple (Ananas comosus cv. Smooth Cayenne) by ethephon. Liu Sheng-hui,Zang Xiao-ping,Sun Guang-ming,Liu Sheng-hui,Zang Xiao-ping,Sun Guang-ming. 2011

[13]Effects of Wax Treatment on the Physiology and Cellular Structure of Harvested Pineapple during Cold Storage. Hu, Huigang,Li, Xueping,Chen, Weixin,Hu, Huigang,Dong, Chen.

[14]Phenological growth stages of pineapple (Ananas comosus) according to the extended Biologische Bundesantalt, Bundessortenamt and Chemische Industrie scale. Zhang, H. N.,Sun, W. S.,Sun, G. M.,Liu, S. H.,Li, Y. H.,Wu, Q. S.,Wei, Y. Z..

[15]Physico-Chemical Properties, Antioxidant Activity and Mineral Contents of Pineapple Genotypes Grown in China. Lu, Xin-Hua,Sun, De-Quan,Wu, Qing-Song,Liu, Sheng-Hui,Sun, Guang-Ming.

[16]TREHALOSE SYNTHASE GENE TRANSFER MEDIATED BY AGROBACTERIUM TUMEFACIENS ENHANCES RESISTANCE TO OSMOTIC STRESS IN SUGARCANE. ZI-ZHANG WANG,SHU-ZHEN ZHANG,BEN-PENG YANG,YANG-RUI LI. 2004

[17]CLONING OF TREHALOSE SYNTHASE GENE AND TRANSFORMATION INTO SUGACANE. Zhang Shuzheng,Zheng Xueqin. 2001

[18]Isolation, Characterization, and Expression Analysis of the MaMDH Gene in Banana. Jia, Cai-Hong,Liu, Ju-Hua,Jin, Zhi-Qiang,Deng, Qiu-Ju,Zhang, Jian-Bin,Xu, Bi-Yu,Jin, Zhi-Qiang. 2013

[19]Isolation and Characterization of Ftsz Genes in Cassava. Geng, Meng-Ting,Yao, Yuan,Li, Rui-Mei,Fu, Shao-Ping,Duan, Rui-Jun,Liu, Jiao,Guo, Jian-Chun,Geng, Meng-Ting,Min, Yi,Chen, Xia,Fan, Jie,Yuan, Shuai,Wang, Lei,Zhang, Fan,Shang, Lu,Wang, Yun-Lin,Hu, Xin-Wen,Sun, Chong. 2017

[20]Antioxidant Phenolic Compounds of Cassava (Manihot esculenta) from Hainan. Yi, Bo,Wei, Xiaoyi,Hu, Lifei,Mei, Wenli,Zhou, Kaibing,Wang, Hui,Luo, Ying,Dai, Haofu,Yi, Bo,Yi, Bo. 2011

作者其他论文 更多>>