文献类型: 外文期刊
作者: Yuan, Shuna 1 ; Hua, Shuijin 2 ; Malik, Waqas 1 ; Bibi, Noreen 1 ; Wang, Xuede 1 ;
作者机构: 1.Zhejiang Univ, Coll Agr & Biotechnol, Hangzhou 310058, Zhejiang, Peoples R China
2.Zhejiang Acad Agr Sci, Inst Crop & Nucl Technol Utilizat, Hangzhou 310021, Zhejiang, Peoples R China
3.Bahauddin Zakariya Univ, Dept Plant Breeding & Genet, Univ Coll Agr, Multan, Pakistan
4.Nucl Inst Agr & Biol, Plant Breeding & Genet Div, Faisalabad, Pakistan
关键词: Carbohydrate metabolism;Cellulose;Flavonoids;Colored cotton;Respiration
期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Colored cotton is a very attractive proposition for the textile industry as it reduces the cost for dying. However, inferior fiber quality and non uniform color make it unsuitable for heavy machine spinning. Due to this reason cultivation of colored cotton on commercial scale has been restricted by cotton growers. The current study was planned to unveil the process of fiber development in isogenic lines of brown, green and white cotton by comparing their fiber length, flavonoid, cellulose, carbohydrate and enzyme activities (SuSy, SPS, acid invertase, Cox, NAD+, NADH, NADP+, and NADPH). White cotton fiber exhibited high cellulose contents (915.81 mg g(-1)) and long fibers (3.07 cm) as compared to colored cotton fibers with low cellulose content (787.63 and 780.66 mg g(-1)) and shorter fiber length (2.54 and 2.48 cm). Similarly the amount of flavonoids also varied significantly with maximum concentration (8.67 and 7.13 mg g(-1)) in brown and green cotton fiber at 5 DPA as compared to white cotton fiber (3.12 mg g(-1)) at 0 DPA. This high concentration of flavonoid not only lowered the total amount of carbohydrates but also lowered the sucrose transformation rate to developing cotton fiber in colored cotton. The activity of different enzymes (AI, SuSy and SPS, Cox, NAD+/NADH and coenzymes NADP+/NADPH involved in the metabolism of carbohydrates was higher in brown cotton fiber than green cotton fiber. However, high activity of these enzymes did not always correlated with higher amount of cellulose thus indicated the involvement of complex mechanisms for cellulose and flavonoid synthesis during the development of cotton fiber.
- 相关文献
作者其他论文 更多>>
-
Elevated ROS Levels Caused by Reductions in GSH and AsA Contents Lead to Grain Yield Reduction in Qingke under Continuous Cropping
作者:Gao, Xue;Tan, Jianxin;Hao, Pengfei;Jin, Tao;Yi, Kaige;Lin, Baogang;Hua, Shuijin
关键词:ascorbic acid; glutathione; lipid peroxidation; Qingke; redox; reactive oxygen species; yield
-
Multi-Omics Analysis Reveals That Anthocyanin Degradation and Phytohormone Changes Regulate Red Color Fading in Rapeseed (Brassica napus L.) Petals
作者:Huang, Lan;Huang, Lan;Lin, Baogang;Hao, Pengfei;Yi, Kaige;Li, Xi;Hua, Shuijin
关键词:anthocyanin; Brassica napus L.; fading; metabolomics; petal; phytohormone; transcriptomics
-
Cytological and Molecular Characterization of a New Ogura Cytoplasmic Male Sterility Restorer of Brassica napus L.
作者:Huang, Lan;Lin, Baogang;Hao, Pengfei;Yi, Kaige;Li, Xi;Hua, Shuijin;Huang, Lan;Ren, Yun
关键词:Brassica napus; cytology; molecular marker; Ogura CMS; restorer line
-
Genomic and transcriptome analyses reveal potential contributors to erucic acid biosynthesis in seeds of rapeseed (Brassica napus)
作者:Xu, Shiqi;Chen, Shan;Cai, Jialing;Yan, Tao;Tu, Mengxin;Jiang, Lixi;Hua, Shuijin;Wang, Ruisen
关键词:
-
How Antioxidants, Osmoregulation, Genes and Metabolites Regulate the Late Seeding Tolerance of Rapeseeds (Brassica napus L.) during Wintering
作者:Hao, Pengfei;Lin, Baogang;Yi, Kaige;Xue, Bowen;Huang, Lan;Li, Xi;Hua, Shuijin;Ren, Yun;Hu, Hao;Lou, Weidong
关键词:agronomic characters; multi-omics; oil security; phenylpropanoid biosynthesis; ROS; TCA cycle
-
Transcriptomic Analysis of the Reduction in Seed Oil Content through Increased Nitrogen Application Rate in Rapeseed (Brassica napus L.)
作者:Hao, Pengfei;Lin, Baogang;Yi, Kaige;Huang, Lan;Li, Xi;Hua, Shuijin;Ren, Yun;Jiang, Lixi
关键词:fatty acid; fertilizer; genetic; gene expression; protein; seed development; transcriptome
-
Secondary compost products improved tomato production via regulating primary/secondary metabolism and hormone signal interaction
作者:Hao, Pengfei;Qiu, Chengwei;Wu, Yi;Liu, Wenxing;Wu, Feibo;Hao, Pengfei;Hua, Shuijin;Qiu, Chengwei;Wu, Yi;Liu, Wenxing;Vincze, Eva
关键词:Metabolomics; RNA-seq; CO2 fermentation; Secondary compost products; Carbon neutral; Hormone signal