您好,欢迎访问江苏省农业科学院 机构知识库!

Large-scale utilization of water hyacinth for nutrient removal in Lake Dianchi in China: The effects on the water quality, macrozoobenthos and zooplankton

文献类型: 外文期刊

作者: Wang, Zhi 1 ; Zhang, Zhiyong 1 ; Zhang, Junqian 1 ; Zhang, Yingying 1 ; Liu, Haiqing 1 ; Yan, Shaohua 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Agr Resource & Environm, Nanjing 210014, Peoples R China

2.Chinese Acad Sci, Inst Geodesy & Geophys, Wuhan 430077, Peoples R China

3.Chinese Acad Sci, Inst Hydrobiol, State Key Lab Freshwater Ecol & Biotechnol, Wuhan 430072, Hubei, Peoples R China

关键词: phosphorus;eichhomia crassipes;zoobenthos;zooplankton;eutrophication

期刊名称:CHEMOSPHERE ( 影响因子:7.086; 五年影响因子:6.956 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: An ecological engineering project using water hyacinth for nutrient removal was performed in Baishan Bay of a large shallow eutrophic lake, Lake Dianchi in China. In the present study, a systematic survey of water quality, macrozoobenthos and zooplankton inside (IWH), around (AWH) and far away (FWH) water hyacinth mats was conducted in Baishan Bay from August to October 2010. The results showed that the water quality significantly improved at AWH area. Concentrations of nitrogen and phosphorus were lower and transparency was higher at AWH area than those in IWH and FWH areas. Total densities, dominant species densities, and biodiversity indexes of macrozoobenthos and cladocerans as well as copepods did not differ (P > 0.05) among each other in all three areas. It was significantly (P< 0.05) different for those of rotifers at IWH area compared to those in AWH and FWH areas. The results might suggest a tremendous potential for the utilization of water hyacinth in the eutrophic lake like Lake Dianchi for nutrients removal.

  • 相关文献

[1]Bioremediation of Eutrophic Water by the Controlled Cultivation of Water Hyacinths. Zhang, Yingying,Zhang, Zhiyong,Wang, Zhi,Liu, Haiqin,Wen, Xuezheng,Qin, Hongjie,Yan, Shaohua,Zhang, Yingying,Rittmann, Bruce E.. 2016

[2]Fenced cultivation of water hyacinth for cyanobacterial bloom control. Qin, Hongjie,Zhang, Zhiyong,Liu, Haiqin,Wen, Xuezheng,Zhang, Yingying,Wang, Yan,Yan, Shaohua,Li, Dunhai.

[3]Nitrogen removal from Lake Caohai, a typical ultra-eutrophic lake in China with large scale confined growth of Eichhornia crassipes. Wang, Zhi,Zhang, Zhiyong,Zhang, Yingying,Zhang, Jungian,Yan, Shaohua,Guo, Junyao,Wang, Zhi,Zhang, Jungian.

[4]Advances in management and utilization of invasive water hyacinth (Eichhornia crassipes) in aquatic ecosystems - a review. Yan, Shao-Hua,Song, Wei,Guo, Jun-Yao.

[5]Responses of periphyton morphology, structure, and function to extreme nutrient loading. Lu, Haiying,Feng, Yanfang,Yang, Linzhang,Lu, Haiying,Feng, Yanfang,Wu, Yonghong,Yang, Linzhang,Lu, Haiying,Shao, Hongbo,Wang, Jinhua.

[6]Vertical and horizontal assemblage patterns of bacterial communities in a eutrophic river receiving domestic wastewater in southeast China. Gao, Yan,Wang, Chengcheng,Zhang, Weiguo,Di, Panpan,Yi, Neng,Gao, Yan,Gao, Yan,Chen, Chengrong,Gao, Yan.

[7]N-15 isotope fractionation in an aquatic food chain: Bellamya aeruginosa (Reeve) as an algal control agent. Han, Shiqun,Yan, Shaohua,Zhang, Jianqiu,Song, Wei,Liu, Haiqin,Chen, Kaining,Zhang, Zhenhua,Zed, Rengel. 2010

[8]Effect of Eichhornia crassipes on production of N-2 by denitrification in eutrophic water. Gao, Yan,Yi, Neng,Wang, Yan,Ma, Tao,Zhou, Qing,Zhang, Zhenhua,Yan, Shaohua,Ma, Tao. 2014

[9]Response of the Growth of Vallisneria natans Under High Zn2+ Stress and Different NH4+/NO3- Ratios. Wang, Baozhong,Zhou, Lihua,Li, Susu,Wang, Baozhong,Zhang, Xia,Luo, Yanqing. 2015

[10]Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Xu, Gang,Zhang, You,Sun, Junna,Shao, Hongbo,Shao, Hongbo,Sun, Junna,Zhang, You.

[11]Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and P-31 NMR analysis. Xu, Gang,Zhang, You,Shao, Hongbo,Sun, Junna,Shao, Hongbo,Sun, Junna,Zhang, You.

[12]Periphytic biofilm: A buffer for phosphorus precipitation and release between sediments and water. Lu, Haiying,Wan, Juanjuan,Li, Jiuyu,Wu, Yonghong,Lu, Haiying,Shao, Hongbo,Wan, Juanjuan.

[13]CHARACTERISTICS OF PHOSPHORUS LOSSES DUE TO SURFACE RUNOFF IN A PEACH ORCHARD AND THE EFFECTS OF INTER-PLANTING WHITE CLOVER (TRIFOLIUM REPENS L.) ON FRUIT YIELD AND QUALITY. Guo, Zhi,Liu, Hong-jiang,Zhou, Wei,Chen, Liu-gen,Zheng, Jian-chu,Guo, Zhi. 2016

[14]Estimation the leaf phosphorus concentration of litchi (Litchi chinensis Sonn.) at different growth stages by canopy reflectance. Wang, Chongyang,Chen, Shuisen,Li, Dan,Liu, Wei,Huang, Siyu,Peng, Zhiping. 2015

作者其他论文 更多>>