您好,欢迎访问江苏省农业科学院 机构知识库!

Validation and high-resolution mapping of a major quantitative trait locus for alkaline salt tolerance in soybean using residual heterozygous line

文献类型: 外文期刊

作者: Tuyen, D. D. 1 ; Zhang, H. M. 1 ; Xu, D. H. 1 ;

作者机构: 1.JIRCAS, Tsukuba, Ibaraki 3058686, Japan

2.Cuulong Delta Rice Res Inst CLRRI, Thoilai, Cantho, Vietnam

3.Jiangsu Acad Agr Sci, Inst Vegetable Crops, Nanjing 210014, Jiangsu, Peoples R China

关键词: Soybean;Alkaline salt tolerance;High-resolution mapping

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Alkaline soil restricts soybean plant growth and yield. In our previous study, a major alkaline salt tolerance quantitative trait locus (QTL) was identified in soybean on chromosome 17. In this study, the residual heterozygous line (RHL46), which was selected from a population of F6 recombinant inbred lines (RILs) derived from a cross between an alkaline salt-sensitive soybean cultivar Jackson and a tolerant wild soybean accession JWS156-1, was used for validation and high-resolution mapping of the QTL. In a large segregating population (n = 1,109), which was produced by self-pollinating heterozygotes of RHL46, segregation of alkaline salt tolerance showed a continuous distribution, and the tolerant plants were predominant. Linkage mapping analysis revealed a major QTL with a large dominant effect for alkaline salt tolerance, and the highest LOD score was detected between the single sequence repeat (SSR) markers GM17-12.2 and Satt447. Furthermore, 10 fixed recombinant lines carrying chromosome fragments of different lengths in the QTL region were selected from the RHL46 progeny. Phenotype evaluation and SSR marker analysis of the recombinant lines narrowed down the QTL to a 3.33-cM interval region between the markers GM17-11.6 and Satt447 with a physical map length of approximately 771 kb. High-resolution mapping of the alkaline salt tolerance QTL will be useful not only for marker-assisted selection in soybean breeding programs but also for map-based cloning of the alkaline salt tolerance gene in order to understand alkaline salt tolerance in soybean and other plant species.

  • 相关文献

[1]Purification and characterization of beta-glucosidase from newly isolated Aspergillus sp MT-0204. Qi, Bin,Liu, Xianjin,Qi, Bin,Wang, Limei. 2009

[2]The Soybean Basic Helix-Loop-Helix Transcription Factor ORG3-Like Enhances Cadmium Tolerance via Increased Iron and Reduced Cadmium Uptake and Transport from Roots to Shoots. Xu, Zhaolong,Liu, Xiaoqing,He, Xiaolan,Xu, Ling,Huang, Yihong,Shao, Hongbo,Zhang, Dayong,Shao, Hongbo,Tang, Boping,Ma, Hongxiang. 2017

[3]A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress. Zhang, Dayong,He, Xiaolan,Xu, Zhaolong,Xu, Ling,Wei, Peipei,Huang, Yihong,Brestic, Marian,Ma, Hongxiang,Shao, Hongbo,Tong, Jinfeng,Brestic, Marian,Shao, Hongbo. 2016

[4]GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants. Chen, Huatao,Chen, Xin,Gu, Heping,Wu, Bingyue,Zhang, Hongmei,Yuan, Xingxing,Cui, Xiaoyan. 2014

[5]Whole-genome identification and expression analysis of K+ efflux antiporter (KEA) and Na+/H+ antiporter (NHX) families under abiotic stress in soybean. Chen Hua-tao,Chen Xin,Wu Bing-yue,Yuan Xing-xing,Zhang Hong-mei,Cui Xiao-yan,Liu Xiao-qing. 2015

[6]Over-expression of GmMYB39 leads to an inhibition of the isoflavonoid biosynthesis in soybean (Glycine max. L). Liu, Xiaoqing,Xu, Ling,Xu, Zhaolong,Huang, Yihong,He, Xiaolan,Ma, Hongxiang,Yi, Jinxin,Zhang, Dayong,Yuan, Lingling.

[7]Genome-wide analysis of terpene synthases in soybean: Functional characterization of GmTPS3. Huang, Fang,Wang, Xia,Wang, Jiao,Yu, Deyue,Liu, Jianyu,Zhang, Man,Zheng, Rui.

[8]Soybean C2H2-Type Zinc Finger Protein GmZFP3 with Conserved QALGGH Motif Negatively Regulates Drought Responses in Transgenic Arabidopsis. Zhang, Dayong,Xu, Zhaolong,Wei, Peipei,Xu, Ling,Wan, Qun,Huang, Yihong,He, Xiaolan,Shao, Hongbo,Ma, Hongxiang,Tong, Jinfeng,Yang, Jiayin,Shao, Hongbo. 2016

[9]Molecular identification of genes controlling flowering time, maturity, and photoperiod response in soybean. Xia, Zhengjun,Zhai, Hong,Liu, Baohui,Kong, Fanjiang,Yuan, Xiaohui,Wu, Hongyan,Xia, Zhengjun,Cober, Elroy R.,Harada, Kyuya. 2012

[10]Over-expression of GmWRKY111 Enhances NaCl Tolerance of Salt-Sensitive Genotype of Glycine max. Xu, Zhao Long,Ma, Hong Xiang,Xu, Zhao Long,Yi, JinXin,Xu, Ling,Liu, Xiao Qing,He, XiaoLan,Huang, Yi Hong,Ma, Hong Xiang,Zhang, Da Yong,Ali, Zulfiqar,Karim, Ihsan,Rasul, Maria,Ali, Zulfiqar,Karim, Ihsan,Rasul, Maria. 2014

[11]Identification of novel loci for salt stress at the seed germination stage in soybean. Kan, Guizhen,Li, Yakai,Hu, Zhenbin,Zhang, Wei,He, Xiaohong,Yu, Deyue,Ning, Lihua.

[12]Heterologous expression of GmSIP1;3 from soybean in tobacco showed and growth retardation and tolerance to hydrogen peroxide. Zhang, Dayong,Huang, Yihong,Wan, Qun,Xu, Zhaolong,Shao, Hongbo,Shao, Hongbo,Kumar, Manoj,Pandey, Girdhar K..

[13]Construction and targeted retrieval of specific clone from a non-gridded soybean bacterial artificial chromosome library. Xia, Zhengjun,Wu, Hongyan,Xia, Zhengjun,Watanabe, Satoshi,Harada, Kyuya.

作者其他论文 更多>>