您好,欢迎访问江苏省农业科学院 机构知识库!

Aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference

文献类型: 外文期刊

作者: Zhao, Xue Qiang 1 ; Guo, Shi Wei 2 ; Shinmachi, Fumie 3 ; Sunairi, Michio 4 ; Noguchi, Akira 5 ; Hasegawa, Isao 5 ; Sh 1 ;

作者机构: 1.Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China

2.Jiangsu Acad Agr Sci, Inst Foods Crop, Nanjing 210014, Jiangsu, Peoples R China

3.Nihon Univ, Jr Coll, Dept Bioresource Sci, Fujisawa, Kanagawa 2520880, Japan

4.Nihon Univ, Coll Bioresource Sci, Dept Appl Biol Sci, Fujisawa, Kanagawa 2520880, Japan

5.Nihon Univ, Coll Bioresource Sci, Dept Chem & Life Sci, Fujisawa, Kanagawa 2520880, Japan

关键词: Aluminium;ammonium;correlation;Indica;Japonica;nitrate;rice

期刊名称:ANNALS OF BOTANY ( 影响因子:4.357; 五年影响因子:5.488 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Background and Aims: Acidic soils are dominated chemically by more ammonium and more available, so more potentially toxic, aluminium compared with neutral to calcareous soils, which are characterized by more nitrate and less available, so less toxic, aluminium. However, it is not known whether aluminium tolerance and nitrogen source preference are linked in plants. Methods: This question was investigated by comparing the responses of 30 rice (Oryza sativa) varieties (15 subsp. japonica cultivars and 15 subsp. indica cultivars) to aluminium, various ammonium/nitrate ratios and their combinations under acidic solution conditions. Key Results: indica rice plants were generally found to be aluminium-sensitive and nitrate-preferring, while japonica cultivars were aluminium-tolerant and relatively ammonium-preferring. Aluminium tolerance of different rice varieties was significantly negatively correlated with their nitrate preference. Furthermore, aluminium enhanced ammonium-fed rice growth but inhibited nitrate-fed rice growth. Conclusions: The results suggest that aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference under acidic solution conditions. A schematic diagram summarizing the interactions of aluminium and nitrogen in soil-plant ecosystems is presented and provides a new basis for the integrated management of acidic soils.

  • 相关文献

[1]Selective sweep with significant positive selection serves as the driving force for the differentiation of japonica and indica rice cultivars. Yuan, Yang,Yuan, Yang,Zeng, Shuiyun,Gu, Longjiang,Si, Weina,Zhang, Xiaohui,Tian, Dacheng,Yang, Sihai,Wang, Long,Zhang, Qijun. 2017

[2]The Comparison in Tissue Culture Ability of Mature Embryo in Different Cultivars of Rice. Yan Li-na,Li Xia,Wu Dan,Yan Li-na. 2010

[3]RNA-Seq analysis of differentially expressed genes in rice under varied nitrogen supplies. Yang, Shun-ying,Hao, Dong-li,Yang, Guang-zhe,Wang, Li,Su, Yan-hua,Yang, Shun-ying,Hao, Dong-li,Wang, Li,Song, Zhi-zhong.

[4]DISTRIBUTION OF SEVEN GRAIN GENES AND EVALUATION OF THEIR GENETIC EFFECTS ON GRAIN TRAITS. Zhang, Yadong,Zhao, Qingyong,Zhao, Chunfang,Chen, Tao,Zhu, Zhen,Zhou, Lihui,Yao, Shu,Zhao, Ling,Wang, Cailin. 2016

[5]Effects of male sterile cytoplasm on yield and agronomic characters in Japonica hybrid rice, Oryza sativa L.. Wang, CL,Tang, SZ,Tang, YG. 1998

[6]Positive relationship detected between soil bioaccessible organic pollutants and antibiotic resistance genes at dairy farms in Nanjing, Eastern China. Sun, Mingming,Wu, Jun,Tian, Da,Shen, Fangyuan,Liu, Kuan,Hu, Feng,Li, Huixin,Sun, Mingming,Ye, Mao,Jiang, Xin,Feng, Yanfang,Yang, Linzhang,Wan, Jinzhong,Kengara, Fredrick Orori.

[7]Studies on Correlation between Flowering and Maturing Stage in Pears. Li, X. G.,Yang, Q. S.,Lin, J.,Wang, Zh. H.,Chang, Y. H.. 2011

[8]Characterization of Grain Quality and Starch Fine Structure of Two Japonica Rice (Oryza Sativa) Cultivars with Good Sensory Properties at Different Temperatures during the Filling Stage. Zhang, Changquan,Zhou, Lihui,Lu, Huwen,Zhou, Xingzhong,Qan, Yiting,Li, Qianfeng,Lu, Yan,Gu, Minghong,Liu, Qiaoquan,Zhou, Lihui,Zhu, Zhengbin.

[9]A novel, in vivo, indoor method to preserve rice black-streaked dwarf virus in small brown planthopper using wheat seedling as a bridge host. Ren, Chunmei,Cheng, Zhaobang,Yang, Liu,Miao, Qian,Fan, Yongjian,Zhou, Yijun.

[10]Delivery of roxarsone via chicken diet -> chicken -> chicken manure -> soil -> rice plant. Lu, Weisheng,Bai, Cuihua,Huang, Lianxi,He, Zhaohuan,Zhou, Changmin.

[11]Natural Variations in SLG7 Regulate Grain Shape in Rice. Miao, Jun,Peng, Xiurong,Leburu, Mamotshewa,Yuan, Fuhai,Gu, Houwen,Gao, Yun,Tao, Yajun,Gong, Zhiyun,Yi, Chuandeng,Gu, Minghong,Yang, Zefeng,Liang, Guohua,Gu, Haiyong,Zhu, Jinyan.

[12]Periphyton growth reduces cadmium but enhances arsenic accumulation in rice (Oryza sativa) seedlings from contaminated soil. Shi, Gao Ling,Ma, Hong Xiang,Lu, Hai Ying,Liu, Jun Zhuo,Wu, Yong Hong,Lou, Lai Qing,Tang, Xian Jin.

[13]Changes in Violaxanthin Deepoxidase Activity and Unsaturation of Thylakoid Membrane Lipids in Indica and Japonica Rice Under Chilling Condition and Strong Light. Ji, BH,Cao, YY,Xie, HS,Zhu, SQ,Ma, Q,Jian, DM.

[14]In Situ Field-Scale Remediation of Low Cd-Contaminated Paddy Soil Using Soil Amendments. Ai, Shao-ying,Wang, Yan-hong,Tang, Ming-deng,Li, Yi-Chun,Li, Lin-feng,Ai, Shao-ying,Wang, Yan-hong,Tang, Ming-deng,Li, Yi-Chun,Li, Lin-feng,Ai, Shao-ying,Wang, Yan-hong,Tang, Ming-deng,Li, Yi-Chun.

[15]Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Ma, Jing,Lv, Chunfang,Xu, Minli,Chen, Guoxiang,Gao, Zhiping,Lv, Chuangen.

[16]Molecular functions of genes related to grain shape in rice. Zheng, Jia,Zhang, Yadong,Wang, Cailin.

[17]Development of Chromosome Segment Substitution Lines Derived from Backcross between Two Sequenced Rice Cultivars, Indica Recipient 93-11 and Japonica Donor Nipponbare. Zhu, Wenyin,Lin, Jing,Yang, Dewei,Zhao, Ling,Zhang, Yadong,Zhu, Zhen,Chen, Tao,Wang, Cailin.

[18]Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation. Feng, Huimin,Zhi, Yang,Li, Ran,Li, Bin,Chen, Jingguang,Xu, Guohua,Fan, Xiaorong,Li, Bin,Chen, Jingguang,Xu, Guohua,Fan, Xiaorong,Xia, Xiudong.

[19]Genetic linkage map of Lolium multiflorum Lam. constructed from a BC1 population derived from an interspecific hybridization, L. multiflorum x Lolium temulentum L. x L. temulentum. Guan, Xuanli,Tan, Lubin,Fu, Yongcai,Cai, Hongwei,Guan, Xuanli,Tan, Lubin,Fu, Yongcai,Cai, Hongwei,Hirata, Mariko,Yuyama, Nana,Cai, Hongwei,Ding, Chenglong,Xu, Nengxiang,Tan, Lubin,Wang, Jianping.

[20]Short and erect rice (ser) mutant from Khao Dawk Mali 105' improves plant architecture. Yan, Wengui,Jia, Limeng,Jackson, Aaron,Pan, Xuhao,Hu, Biaolin,Zhang, Qijun,Jia, Limeng,Jia, Limeng,Pan, Xuhao,Yan, Zongbu,Deren, Christopher,Pan, Xuhao,Huang, Bihu.

作者其他论文 更多>>