您好,欢迎访问中国热带农业科学院 机构知识库!

The function of Rad6 gene in Hevea brasiliensis extends beyond DNA repair

文献类型: 外文期刊

作者: Qin, Bi 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Rubber Res Inst, Minist Agr, Key Lab Biol & Genet Resources Rubber Tree, Danzhou 571737, Hainan, Peoples R China

关键词: DNA repair;Hevea brasiliensis;Rad6;Ubiquitin conjugating enzyme

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The Rad6 gene of Saccharomyces cerevisiae encodes an ubiquitin-conjugating enzyme (E2) which is required for DNA repair, damage-induced mutagenesis, sporulation, etc. In this study, one Rad6 homolog, designated HbRad6, was cloned in rubber tree (Hevea brasiliensis). The putative protein sequence of HbRad6 contains 152 amino acids, a conserved UBC domain, and a conserved active-site cysteine in the UBC domain, which is required for E2 enzymes catalytic activity. HbRad6 shared high similarity with Rad6 from other species. It shared the highest similarity with rice OsRad6 and Arabidopsis thaliana AtUBC2 with 96.05% identical residues, and 63.16% sequence identity with yeast Rad6 (excluding the acidic tail). Comparing expression among different Hevea tissues demonstrated that HbRad6 was ubiquitously expressed in all tissues, but it revealed a preferential expression in the latex. Furthermore, HbRad6 expression was markedly induced by DNA-damaging agent H_2O_2, the latex stimulator ethephon (ET), and methyl jasmonate (MeJA), while NaCl and wounding treatments had relatively minor effect upon its expression. Genetic complementation experiment revealed that HbRad6 had minor effects on the complementation of the UV sensitivity of yeast rad6 null mutant, indicating that the Hevea Rad6 protein may partially suppress the UV sensitivity of the yeast rad6 mutant. These results suggested that HbRad6 was a multifunction gene involved in DNA damage repair, hormones and stress responses in rubber tree.

  • 相关文献

[1]橡胶间种百香果的不同栽培模式探讨. 吴斌,杨其军,朱文彬,黄东梅,马伏宁,詹儒林,蒋雄英,宋顺. 2021

[2]泛素结合酶RAD6的结构与功能研究进展. 覃碧,邓治,刘长仁,李德军. 2013

[3]Involvement of Chlamydomonas DNA damage tolerence gene UBC2 in lipid accumulation. Li, Xinhan,Li, Ping,Deng, Xiaodong,Fei, Xiaowen. 2017

[4]Transcriptome-Wide Identification and Characterization of MYB Transcription Factor Genes in the Laticifer Cells of Hevea brasiliensis. Wang, Ying,Zhan, Di-Feng,Li, Hui-Liang,Guo, Dong,Zhu, Jia-Hong,Peng, Shi-Qing,Zhan, Di-Feng. 2017

[5]Three MADS-box genes of Hevea brasiliensis expressed during somatic embryogenesis and in the laticifer cells. Li, Hui-Liang,Wang, Ying,Guo, Dong,Peng, Shi-Qing,Tian, Wei-Min. 2011

[6]Acyl-CoA-binding protein family members in laticifers are possibly involved in lipid and latex metabolism of Hevea brasiliensis (the Para rubber tree). Nie, Zhiyi,Wang, Yihang,Wu, Chuntai,Li, Yu,Kang, Guijuan,Qin, Huaide,Zeng, Rizhong,Nie, Zhiyi,Wang, Yihang,Wu, Chuntai,Li, Yu,Kang, Guijuan,Qin, Huaide,Zeng, Rizhong,Wang, Yihang. 2018

[7]The calcium-dependent protein kinase (CDPK) and CDPK-related kinase gene families in Hevea brasiliensis-comparison with five other plant species in structure, evolution, and expression. Xiao, Xiao-Hu,Sui, Jin-Lei,Qi, Ji-Yan,Fang, Yong-Jun,Tang, Chao-Rong,Yang, Meng,Hu, Song-Nian,Sui, Jin-Lei. 2017

[8]Molecular cloning, expression profiles and characterization of a novel translationally controlled tumor protein in rubber tree (Hevea brasiliensis). Li, Dejun,Deng, Zhi,Liu, Xianghong,Qin, Bi,Liu, Xianghong. 2013

[9]Overexpression of a Hevea brasiliensis ErbB-3 Binding protein 1 Gene Increases Drought Tolerance and Organ Size in Arabidopsis. Cheng, Han,Chen, Xiang,Zhu, Jianshun,Huang, Huasun. 2016

[10]A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). Tang, Chaorong,Qi, Jiyan,Li, Heping,Zhang, Cunliang,Wang, Yuekun. 2007

[11]Comparative Proteomics of Rubber Latex Revealed Multiple Protein Species of REF/SRPP Family Respond Diversely to Ethylene Stimulation among Different Rubber Tree Clones. Tong, Zheng,Wang, Dan,Sun, Yong,Yang, Qian,Meng, Xueru,Wang, Limin,Wang, Xuchu,Feng, Weiqiang,Wang, Xuchu,Li, Ling,Wurtele, Eve Syrkin,Wang, Xuchu,Li, Ling,Wurtele, Eve Syrkin,Li, Ling. 2017

[12]Characterization of HbWRKY1, a WRKY transcription factor from Hevea brasiliensis that negatively regulates HbSRPP. Wang, Ying,Guo, Dong,Li, Hui-Liang,Peng, Shi-Qing,Wang, Ying,Peng, Shi-Qing. 2013

[13]Laticifer differentiation in Hevea brasiliensis: Induction by exogenous jasmonic acid and linolenic acid. Hao, BZ,Wu, JL. 2000

[14]Molecular mechanism of ethylene stimulation of latex yield in rubber tree (Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis. Liu, Jin-Ping,Zhuang, Yu-Fen,Guo, Xiu-Li,Li, Yi-Jian. 2016

[15]Genome-wide identification and expression analysis of the metacaspase gene family in Hevea brasiliensis. Liu, Hui,Deng, Zhi,Li, Dejun,Chen, Jiangshu,Wang, Sen,Hao, Lili.

[16]Differential gene expression profiles in latex from Hevea brasiliensis between self-rooting juvenile and donor clones. Li, Hui-Liang,Guo, Dong,Peng, Shi-Qing.

[17]Effects of powdery mildew infection on chloroplast and mitochondrial functions in rubber tree. Wang, Li-Feng,Wang, Meng,Zhang, Yu.

[18]Expression Profiles, Characterization and Function of HbTCTP in Rubber Tree (Hevea brasiliensis). Deng, Zhi,Chen, Jiangshu,Liu, Changren,Liu, Hui,Yang, Hong,Li, Dejun,Chen, Jiangshu,Liu, Changren,Xia, Zhihui,Leclercq, Julie,Montoro, Pascal,Zhou, Zhuangzhi,Zhou, Zhuangzhi. 2016

[19]Age-dependent and jasmonic acid-induced laticifer-cell differentiation in anther callus cultures of rubber tree. Tan, Deguan,Sun, Xuepiao,Zhang, Jiaming. 2014

[20]The SWEET gene family in Hevea brasiliensis - its evolution and expression compared with four other plant species. Sui, Jin-Lei,Sui, Jin-Lei,Xiao, Xiao-Hu,Qi, Ji-Yan,Fang, Yong-Jun,Tang, Chao-Rong,Sui, Jin-Lei,Xiao, Xiao-Hu,Qi, Ji-Yan,Fang, Yong-Jun,Tang, Chao-Rong. 2017

作者其他论文 更多>>