您好,欢迎访问江苏省农业科学院 机构知识库!

Physiological and metabolic enzymes activity changes in transgenic rice plants with increased phosphoenolpyruvate carboxylase activity during the flowering stage

文献类型: 外文期刊

作者: Xia, Li 1 ; Cao, Wang 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Food Crops, Jiangsu High Qual Rice Res & Dev Ctr, Nanjing 210014, Jiangsu, Peoples R China

2.Nanjing Normal Univ, Coll Life Sci, Jiangsu Key Lab Microbes & Funct Genom, Nanjing 210097, Jiangsu, Peoples R China

关键词: Phosphoenolpyruvate carboxylase (PEPC);Transgenic rice;Carbon metabolic enzyme;Nitrogen metabolic enzyme;Photosynthesis

期刊名称:ACTA PHYSIOLOGIAE PLANTARUM ( 影响因子:2.354; 五年影响因子:2.711 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: To compare the differences in physiology and metabolism between phosphoenolpyruvate carboxylase (PEPC) transgenic rice and its control, untransformed wild rice, dry matter accumulation, soluble sugar, starch and protein contents and enzyme activitieswere determined in different plant parts during flowering. Results revealed that PEPC transgenic rice had higher dry weights for leaf, stem and sheath as well as panicle than the untransformed wild rice did, with the largest increase in the panicle. Soluble sugar and protein content in the grains of PEPC transgenic rice were significantly enhanced while starch content changed less. PEPC transgenic rice exhibited high levels of PEPC activity, manifesting in high net photosynthetic rates during flowering.Moreover, transgenic rice with high PEPC expression levels also had elevated levels of the enzymes such as sucrose-p-synthase and sucrose synthase, which may confer a higher capacity to assimilate CO2 into sucrose. Little increase in grain starch content was observed in transgenic plants due to the stable activities of starch synthase and Q enzyme. However, the PEPC transgenic rice plant induced the activities of nitrate reductase, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, glutamine synthetase, and asparagine synthase to high levels, as compared with the untransformed rice plant. PEPC activity was correlated with protein content in grains and the enzymes of nitrogen metabolism, suggesting that high PEPC activity in transgenic rice might be able to redirect carbon and nitrogen flow by regulating some enzymes related to carbon or nitrogen metabolisms. These results may help to understand how the C3 plants possessing a C4-like photosynthesis pathway worked by expression of PEPC.

  • 相关文献

[1]Characteristics of carbon assimilation and chlorophyll fluorescence in C_4 photosynthetic enzymes transgenic rice. D-M Jiao,X-Q Huang,X Li,W Chi,T-Y Kuang,Q-D Zhang,MSB Ku. 2001

[2]CO2 exchange and chlorophyll fluorescence of phosphoenolpyruvate carboxylase transgenic rice pollen lines. Ling, Li-Li,Lin, Hong-Hui,Ji, Ben-Hua,Jiao, De-Mao. 2006

[3]A limited photosynthetic C-4-microcycle and its physiological function in transgenic rice plant expressing the maize PEPC gene. Ji, BH,Zhu, SQ,Jiao, DM. 2004

[4]Characteristics of carbon assimilation and tolerance to photo-oxidation in transgenic rice expressing C_4 photosynthesis enzymes. D-M Jiao,X-Q Huang,X Li,W Chi,T-Y Kuang,Q-D Zhang,MSB Ku. 2001

[5]Characteristics of CO2 exchange and chlorophyll fluorescence of transgenic rice with C-4 genes. Huang, XQ,Jiao, DM,Chi, W,Ku, MSB. 2002

[6]The characteristics of CO2 assimilation of photosynthesis and chlorophyll fluorescence in transgenic PEPC rice. Jiao, DM,Li, X,Huang, XQ,Wei, C,Kuang, TY,Maurice, KSB. 2001

[7]Physiological investigation of C-4-phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance. Zhang, Chen,Li, Xia,He, Yafei,Zhang, Jinfei,Yan, Ting,Liu, Xiaolong,Zhang, Chen,Li, Xia,Yan, Ting.

[8]RNAi-mediated transgenic rice resistance to Rice stripe virus. Wang Biao,Lei Yang,Dai Yu-hua,He Wen,Liang Chun,Wang Xi-feng,Guo Cheng,Liang Chun,Zhou Tong,Liang Chun. 2016

[9]Response of Gas Exchange and Water Use Efficiency to Light Intensity and Temperature in Transgenic Rice Expressing PEPC and PPDK Genes. Jiao De-mao,Zhang Bian-jiang,Chen Quan-zhan,Hua Chun,Zhou Feng,Zhou Quan-chen. 2009

[10]Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C(4) photosynthesis enzymes. Jiao, DM,Huang, XQ,Li, X,Chi, W,Kuang, TY,Zhang, QD,Ku, MSB,Cho, DH. 2002

[11]Overexpression of maize phosphoenolpyruvate carboxylase improves drought tolerance in rice by stabilization the function and structure of thylakoid membrane. Shen, W. J.,Chen, G. X.,Xu, J. G.,Jiang, Y.,Liu, L.,Gao, Z. P.,Ma, J.,Lv, C. F.,Chen, X.,Chen, T. H..

[12]Resistance strategies of Phragmites australis (common reed) to Pb pollution in flood and drought conditions. Zhang, Na,Zhang, Zhenhua,Zhang, Na,Chen, Jing,Zhang, Na,Zhang, Jinwei,Mu, Chunsheng,Li, Zhiqiang. 2018

[13]RNA-seq analysis reveals a key role of brassinolide-regulated pathways in NaCl-stressed cotton. Shu, H. M.,Guo, S. Q.,Gong, Y. Y.,Jiang, L.,Zhu, J. W.,Ni, W. C.. 2017

[14]Potassium contributes to zinc stress tolerance in peach (Prunus persica) seedlings by enhancing photosynthesis and the antioxidant defense system. Song, Z. Z.,Guo, S. L.,Yang, Y.,Ma, R. J.,Yu, M. L.,Song, Z. Z.,Guo, S. L.,Yang, Y.,Ma, R. J.,Yu, M. L.,Duan, C. L.,Feng, Y. F.. 2015

[15]Genotypically Identifying Wheat Mesophyll Conductance Regulation under Progressive Drought Stress. Olsovska, Katarina,Brestic, Marian,Shao, Hong Bo,Olsovska, Katarina,Kovar, Marek,Brestic, Marian,Zivcak, Marek,Slamka, Pavol,Shao, Hong Bo. 2016

[16]Hydrogen peroxide regulated photosynthesis in C-4-pepc transgenic rice. Ren, C. G.,Li, X.,Liu, X. L.,Wei, X. D.,Dai, C. C.,Liu, X. L.. 2014

[17]Comparative Profile of Rubisco-interacting Proteins From Arabidopsis: Photosynthesis Under Cold Conditions. Lin Wei-Hong,An Bai-Yi,Sun Li-Wen,Liu Xiao-Yu,Sun Li-Wen,Tan Hua. 2011

[18]Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. Zhou, Rong,Zhao, Liping,Wang, Yinlei,Yu, Wengui,Zhao, Tongmin,Zhou, Rong,Zhao, Liping,Wang, Yinlei,Yu, Wengui,Zhao, Tongmin,Zhou, Rong,Yu, Xiaqing,Wu, Zhen,Ottosen, Carl-Otto,Rosenqvist, Eva. 2017

[19]Measurements of chlorophyll fluorescence in different leaf positions may detect nitrogen deficiency in wheat. Zivcak, Marek,Olsaovska, Katarina,Slamka, Pavol,Galambosova, Jana,Rataj, Vladimir,Brestic, Marian,Shao, Hong-Bo,Shao, Hong-Bo,Kalaji, Hazem M.. 2014

[20]Effects of 1-butanol, neomycin and calcium on the photosynthetic characteristics of pepc transgenic rice. Li Xia,Wang Chao,Ren Chenggang. 2011

作者其他论文 更多>>