您好,欢迎访问中国热带农业科学院 机构知识库!

Isolation of an abscisic acid senescence and ripening inducible gene from litchi and functional characterization under water stress

文献类型: 外文期刊

作者: Liu, Juhua 1 ; Jia, Caihong 1 ; Dong, Fengying 1 ; Wang, Jiabao 2 ; Zhang, Jianbin 1 ; Xu, Yi 3 ; Xu, Biyu 1 ; Jin, Zhiqi 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Key Lab Trop Crop Biotechnol, Minist Agr, Inst Trop Biosci & Biotechnol, Haikou 571101, Peoples R China

2.Chinese Acad Trop Agr Sci, Inst Environm & Plant Protect, Haikou 571101, Peoples R China

3.Chinese Acad Trop Agr Sci, Haikou Expt Stn, Haikou 570102, Peoples R China

4.Chinese Acad Trop Agr Sci, Haikou Expt Stn, Haikou 570102, Peoples

关键词: Antioxidant enzyme;Gene expression;Genetic transformation;LcAsr;Litchi (Litchi chinensis Sonn.);Water stress

期刊名称:PLANTA ( 影响因子:4.116; 五年影响因子:4.316 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A full-length abscisic acid (ABA) senescence and ripening inducible gene named LcAsr was obtained from litchi. Bioinformatic analysis showed that full-length LcAsr was 1,177 bp and contained an open reading frame (ORF) encoding 153 amino acids, 85- and 146-bp 5′ and 3′ UTRs, respectively. LcAsr was expressed in all organs, with preferential expression in the flower and low levels in pulp. The expression level of LcAsr in postharvest uncovered fruit reached a maximum at 24 h after harvest. When the litchi fruit was covered with plastic film, the LcAsr expression level remained constant. LcASR protein localized in the nucleus. LcAsr was transformed in Arabidopsis thaliana L. (ecotype Columbia) and four transgenic lines were obtained. One line, 35S::LcAsrD, was selected for drought tolerance analysis and showed higher tolerance to drought than the control. The activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase were much higher in the transgenic line than the control under drought conditions. The levels of several ABA/stress-regulated genes were investigated. The transcript level of responsive to ABA (RAB18) remained constant and responsive to dehydration (RD29A) displayed a slight decrease in the Columbia line (Col). However, the transcript levels of LcAsr, RAB18, and RD29A were greatly enhanced in the transgenic 35S::LcAsrD. The transcript levels of KAT1, KAT2, and SKOR were also markedly decreased in the transgenic line. These results suggest an important role of LcAsr as a protective molecule for water deficit and help to understand the molecular mechanism of postharvest litchi fruit dehydration.

  • 相关文献

[1]Expression Profile of Antioxidant Enzymes in Hemocytes from Freshwater Prawn Macrobrachium rosenbergii Exposed to an Elevated Level of Copper. Guo, Hui,Miao, Yu-Tao,Qian, Kun,Wang, An-Li,Guo, Hui,Xian, Jian-An.

[2]荔枝Asr基因的分离及功能分析. 张静,董凤英,王家保,刘菊华,许奕,徐碧玉,金志强. 2013

[3]Transcriptome Profiling of Light-Regulated Anthocyanin Biosynthesis in the Pericarp of Litch. Zhang, Hong-Na,Li, Wei-Cai,Shi, Sheng-You,Shu, Bo,Liu, Li-Qin,Wei, Yong-Zan,Xie, Jiang-Hui,Wang, Hui-Cong. 2016

[4]Transcriptome profiling of litchi leaves in response to low temperature reveals candidate regulatory genes and key metabolic events during floral induction. Zhang, Hongna,Shen, Jiyuan,Chen, Houbin,Zhang, Hongna,Wei, Yongzan. 2017

[5]Growth and physiological responses to water and nutrient stress in oil palm. Shao, Hong-bo,Sun, Cheng-xu,Cao, Hong-xing,Lei, Xin-tao,Xiao, Yong,Shao, Hong-bo. 2011

[6]PEG-Mediated Genetic Transformation of Fusarium oxysporum f. sp conglutinans to Study Pathogenesis in Cabbage. Zhang, Wei,Feng, Jianhai,Yan, Hong,Li, Xinghong,Yan, Jiye,Zhao, Wensheng,Huang, Jinguang,Feng, Jianhai,Yang, Laying. 2014

[7]Genetic transformation of tobacco with the trehalose synthase gene from Grifola frondosa Fr. enhances the resistance to drought and salt in tobacco. Zhang, SZ,Yang, BP,Feng, CL,Tang, HL. 2005

[8]CrWSKP1, an SKP1-like Gene, Is Involved in the Self-Incompatibility Reaction of "Wuzishatangju" (Citrus reticulata Blanco). Li, Peng,Miao, Hongxia,Ma, Yuewen,Wang, Lu,Hu, Guibing,Ye, Zixing,Zhao, Jietang,Qin, Yonghua,Miao, Hongxia. 2015

[9]Genetic transformation and regeneration of Hevea brasiliensis transgenic plant with GAI gene by microparticle bombardment. Wang, Ying,Chen, Xiongting,Peng, Shiqing,Wu, Kunxin,Hong, Lei. 2013

[10]Promoter regulatory domain identification of cassava starch synthase IIb gene in transgenic tobacco. Guan, Zhihui,Chen, Xin,Xie, Hairong,Wang, Wenquan,Guan, Zhihui,Chen, Xin,Xie, Hairong,Wang, Wenquan.

[11]Somatic Embryo, an Alternative Target Tissue for Agrobacterium-Mediated Transformation in Hevea brasiliensis. Huang, T. D.,Li, J.,Li, Y. T.,Huang, H. S.,Hua, Y. W..

[12]Low-temperature conditioning induces chilling tolerance in 'Hayward' kiwifruit by enhancing antioxidant enzyme activity and regulating en-dogenous hormones levels. Yang, Qingzhen,Rao, Jingping,Wang, Yuping,Sun, Zhenying,Ma, Qiushi,Dong, Xiaoqing,Yang, Qingzhen,Zhang, Zhengke. 2013

[13]Transcript Profiling of Hevea brasiliensis during Latex Flow. Tian, Wei-Min. 2017

[14]Expression of ACO1, ERS1 and ERF1 genes in harvested bananas in relation to heat-induced defense against Colletotrichum musae. Zhu, Xiangfei,Wang, Aiping,Zhu, Shijiang,Zhang, Lubin,Zhang, Lubin. 2011

[15]Structure, Expression, and Functional Analysis of the Hexokinase Gene Family in Cassava. Geng, Meng-Ting,Wang, Yun-Lin,Hu, Xin-Wen,Yao, Yuan,Li, Rui-Mei,Fu, Shao-Ping,Duan, Rui-Jun,Liu, Jiao,Guo, Jian-Chun,Wu, Xiao-Hui,Sun, Chong. 2017

[16]Emission of volatile esters and transcription of ethylene- and aroma-related genes during ripening of 'Pingxiangli' pear fruit (Pyrus ussuriensis Maxim). Li, Guopeng,Jia, Huijuan,Teng, Yuanwen,Li, Guopeng,Li, Jihua,Wang, Qiang,Zhang, Maojun. 2014

[17]Characterization of myostatin gene (MSTN) of Pekin duck and the association of its polymorphism with breast muscle traits. Xu, T. S.,Gu, L. H.,Liu, X. L.,Xu, T. S.,Xu, T. S.,Hou, S. S.,Zhang, X. H.,Ye, B. G.. 2013

[18]The calcium-dependent protein kinase (CDPK) and CDPK-related kinase gene families in Hevea brasiliensis-comparison with five other plant species in structure, evolution, and expression. Xiao, Xiao-Hu,Sui, Jin-Lei,Qi, Ji-Yan,Fang, Yong-Jun,Tang, Chao-Rong,Yang, Meng,Hu, Song-Nian,Sui, Jin-Lei. 2017

[19]Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava. Wei, Yunxie,Shi, Haitao,Xia, Zhiqiang,Tie, Weiwei,Ding, Zehong,Yan, Yan,Wang, Wenquan,Hu, Wei,Li, Kaimian. 2016

[20]Validation of Reference Genes for RT-qPCR Studies of Gene Expression in Preharvest and Postharvest Longan Fruits under Different Experimental Conditions. Wu, Jianyang,Zhang, Hongna,Liu, Liqin,Li, Weicai,Wei, Yongzan,Shi, Shengyou. 2016

作者其他论文 更多>>