您好,欢迎访问北京市农林科学院 机构知识库!

A comparative study for the quantitative determination of soluble solids content, pH and firmness of pears by Vis/NIR spectroscopy

文献类型: 外文期刊

作者: Li, Jiangbo 1 ; Huang, Wenqian 1 ; Zhao, Chunjiang 1 ; Zhang, Baohua 1 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China

关键词: visible and near infrared spectroscopy;soluble solids content;PH;firmness;pear;partial least squares;least squares-support vector machine;effective wavelength

期刊名称:JOURNAL OF FOOD ENGINEERING ( 影响因子:5.354; 五年影响因子:5.144 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Visible and near infrared (Vis/NIR) spectroscopy was investigated to determine the soluble solids content (SSC), pH and firmness of different varieties of pears. Two-hundred forty samples (80 for each variety) were selected as sample set. Two-hundred ten pear samples (70 for each variety) were selected randomly for the calibration set, and the remaining 30 samples (10 for each variety) for the validation set. Partial least squares (PLS) and least squares-support vector machine (LS-SVM) with different spectral preprocessing techniques were implemented for calibration models. Different wavelength regions including Vis, N1R and Vis/NIR were compared. It indicated that Vis/NIR (400-1800 nm) was optimal for PLS and LS-SVM models. Then, LS-SVM models were developed with a grid search technique and RBF kernel function. All LS-SVM models outperformed PLS models. Next, effective wavelengths (EWs) were selected according to regression coefficients. The EW-LS-SVM models were developed and a good prediction precision and stability was achieved compared with PLS and LV-LS-SVM models. The correlation coefficient of prediction (r_p), root mean square error of prediction (RMSEP) and bias for the best prediction by EW-LS-SVM were 0.9164, 0.2506 and -0.0476 for SSC, 0.8809, 0.0579 and -0.0025 for pH, whereas 0.8912, 0.6247 and -0.2713 for firmness, respectively. The overall results indicated that the regression coefficient was an effective way for the selection of effective wavelengths. LS-SVM was superior to the conventional linear PLS method in predicting SSC, pH and firmness in pears. Therefore, non-linear models may be a better alternative to monitor internal quality of fruits. And the EW-LS-SVM could be very helpful for development of portable instrument or real-time monitoring of the quality of pears.

  • 相关文献

[1]Characteristic Wavelengths Selection of Soluble Solids Content of Pear Based on NIR Spectral and LS-SVM. Fan Shu-xiang,Zhao Chun-jiang,Fan Shu-xiang,Huang Wen-qian,Li Jiang-bo,Zhao Chun-jiang,Zhang Bao-hua. 2014

[2]Prediction of Soluble Solids Content and Firmness of Pears Using Hyperspectral Reflectance Imaging. Fan, Shuxiang,Huang, Wenqian,Guo, Zhiming,Zhang, Baohua,Zhao, Chunjiang,Fan, Shuxiang,Zhao, Chunjiang.

[3]A bi-layer model for nondestructive prediction of soluble solids content in apple based on reflectance spectra and peel pigments. Huang, Wenqian. 2018

[4]The Recognition of Biological Pesticide Adulteration by Attenuated Total Reflection Infrared Spectroscopy. Li Xiao-ting,Wand Dong,Ma Zhi-hong,Pan Li-gang,Wang Ji-hua,Li Xiao-ting,Wang Ji-hua,Zhu Da-Zhou.

[5]Hyperspectral Estimation of Leaf Water Content for Winter Wheat Based on Grey Relational Analysis(GRA). Jin Xiu-liang,Wang Yan,Tan Chang-wei,Zhu Xin-kai,Guo Wen-shan,Xu Xin-gang,Wang Ji-hua,Li Xin-chuan. 2012

[6]Research on Error Reduction of Path Change of Liquid Samples Based on Near Infrared Trans-Reflective Spectra Measurement. Wang Ya-hong,Dong Da-ming,Zheng Wen-gang,Wang Wen-zhong,Wang Ya-hong,Zhou Ping,Ye Song,Wang Wen-zhong. 2014

[7]Using hyperspectral measurements to estimate ratio of leaf carbon to nitrogen in winter wheat. Xu, Xin-gang,Yang, Xiao-dong,Yang, Hao,Feng, Hai-kuai,Yang, Gui-jun,Song, Xiao-yu. 2014

[8]Field monitoring of wheat seedling stage with hyperspectral imaging. Wu Qiong,Fang Jingjing,Ji Jianwei,Wang Cheng. 2016

[9]Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data. Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Liu, Chen,Huang, Wenqian,Tian, Xi.

[10]Effect of spectrum measurement position variation on the robustness of NIR spectroscopy models for soluble solids content of apple. Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng,Fan, Shuxiang,Zhang, Baohua,Li, Jiangbo,Huang, Wenqian,Wang, Chaopeng.

[11]Effectively Predicting Soluble Solids Content in Apple Based on Hyperspectral Imaging. Huang Wen-qian,Li Jiang-bo,Chen Li-ping,Guo Zhi-ming. 2013

[12]Comparative analysis of models for robust and accurate evaluation of soluble solids content in 'Pinggu' peaches by hyperspectral imaging. Chen, Liping. 2017

[13]Application of Characteristic NIR Variables Selection in Portable Detection of Soluble Solids Content of Apple by Near Infrared Spectroscopy. Fan Shu-xiang,Zhao Chun-jiang,Fan Shu-xiang,Huang Wen-qian,Li Jiang-bo,Guo Zhi-ming,Zhao Chun-jiang. 2014

[14]Assessment of Influence Detective Position Variability on Precision of Near Infrared Models for Soluble Solid Content of Watermelon. Qian Man,Fan Shu-xiang,Chen Li-ping,Qian Man,Huang Wen-qian,Wang Qing-yan,Fan Shu-xiang,Zhang Bao-hua,Chen Li-ping,Qian Man,Huang Wen-qian,Wang Qing-yan,Fan Shu-xiang,Zhang Bao-hua,Chen Li-ping,Qian Man,Huang Wen-qian,Wang Qing-yan,Fan Shu-xiang,Zhang Bao-hua,Chen Li-ping. 2016

[15]Near-Infrared Spectra Combining with CARS and SPA Algorithms to Screen the Variables and Samples for Quantitatively Determining the Soluble Solids Content in Strawberry. Li Jiang-bo,Guo Zhi-ming,Huang Wen-qian,Zhang Bao-hua,Zhao Chun-jiang. 2015

[16]Using Vis/NIR Diffuse Transmittance Spectroscopy and Multivariate Analysis to Predicate Soluble Solids Content of Apple. Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang,Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang,Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang,Fan, Shuxiang,Guo, Zhiming,Zhang, Baohua,Huang, Wenqian,Zhao, Chunjiang.

[17]Variable Selection in Visible and Near-Infrared Spectral Analysis for Noninvasive Determination of Soluble Solids Content of 'Ya' Pear. Li, Jiangbo,Huang, Wenqian,Chen, Liping,Fan, Shuxiang,Zhang, Baohua,Guo, Zhiming,Zhao, Chunjiang,Li, Jiangbo.

[18]Research on Nondestructive Measurement of Firmness and Soluble Tannin Content of 'Mopanshi' Persimmon Using Vis/NIR Diffuse Reflection Spectroscopy. Zhang, Peng,Li, J.,Feng, X.,Wang, B.,Xue, Y..

[19]Preharvest application of phellodendron bark extracts controls brown rot and maintains quality of peento-shaped peach. Feng, Xiaoyuan,Cao, Jiankang,Jiang, Weibo,Feng, Xiaoyuan,Wang, Baogang,Li, Wensheng,Shi, Lei. 2008

[20]Risk assessment and ranking of pesticide residues in Chinese pears. Li Zhi-xia,Nie Ji-yun,Yan Zhen,Xu Guo-feng,Kuang Li-xue,Pan Li-gang,Pan Li-gang,Xie Han-zhong,Wang Cheng,Liu Chuan-de,Zhao Xu-bo,Guo Yong-ze. 2015

作者其他论文 更多>>