您好,欢迎访问江苏省农业科学院 机构知识库!

Nitrogen removal from Lake Caohai, a typical ultra-eutrophic lake in China with large scale confined growth of Eichhornia crassipes

文献类型: 外文期刊

作者: Wang, Zhi 1 ; Zhang, Zhiyong 1 ; Zhang, Yingying 1 ; Zhang, Jungian 1 ; Yan, Shaohua 1 ; Guo, Junyao 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Agr Resource & Environm, Nanjing 210014, Jiangsu, Peoples R China

2.Chinese Acad Sci, Inst Geodesy & Geophys, Key Lab Environm & Disaster Monitoring & Evaluat, Wuhan 430077, Peoples R China

3.Chinese Acad Sci, Inst Hydrobiol, State Key Lab Freshwater Ecol & Biotechnol, Wuhan 430072, Peoples R China

关键词: Eutrophication;Lake;Nitrogen;Water hyacinth

期刊名称:CHEMOSPHERE ( 影响因子:7.086; 五年影响因子:6.956 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: An ecological engineering project, with large-scale utilization of Eichhornia crassipes (coverage area ~4.3 km~2) for pollution control in an open ultra-eutrophic lake, Lake Caohai, was first implemented in 2011. In this study, the efficiency of N removal using E crassipes in the lake was evaluated. After E. crassipes was planted in May, the concentrations of TN and NH_4~+ in Waicaohai, the main part of Lake Caohai, were significantly decreased within a month, and then, remained stable from June to November, 2011, although the lake had received waste water continuously from river inlets. The average concentrations of TN, NH_4~+-N and NO_3~--N in water of Xi Yuan Channel (outlet) were reduced to 3.3,0.02 and 0.8 mg L~(-1) from 13.8,4.7 and 5.8 mg L~(-1) in river inlets, respectively. The DO levels in 2011 were not decreased, but concentrations of TN and NH_4~+ were significantly reduced when compared with the historical data from 2007 in the lake. Assimilation by E. crassipes was the main pathway to remove N in Lake Caohai, accounted for 52% of the total N influent (936t), or 64% of the removed N (761t). These results indicated that large scale utilization of E. crassipes for removal of N in the eutrophic lake is practicable.

  • 相关文献

[1]Fenced cultivation of water hyacinth for cyanobacterial bloom control. Qin, Hongjie,Zhang, Zhiyong,Liu, Haiqin,Wen, Xuezheng,Zhang, Yingying,Wang, Yan,Yan, Shaohua,Li, Dunhai.

[2]Bioremediation of Eutrophic Water by the Controlled Cultivation of Water Hyacinths. Zhang, Yingying,Zhang, Zhiyong,Wang, Zhi,Liu, Haiqin,Wen, Xuezheng,Qin, Hongjie,Yan, Shaohua,Zhang, Yingying,Rittmann, Bruce E.. 2016

[3]Isolation of a Methylobacillus sp that degrades microcystin toxins associated with cyanobacteria. Hu, Liang Bin,Hu, Liang Bin,Yang, Jing Dong,Zhou, Wei,Yin, Yu Fen,Chen, Jian,Shi, Zhi Qi,Yang, Jing Dong.

[4]Effects of engineered use of water hyacinths (Eicchornia crassipes) on the zooplankton community in Lake Taihu, China. Chen, Huai-Guo,Peng, Fei,Zhang, Lei,Zhou, Xiao-Dan,Wang, Wei,Xue, Wen-Da,Xu, Xiao-Feng,Zhang, Zhi-Yong,Liu, Hai-Qin,Liu, Guo-Feng,Yan, Shao-Hua.

[5]Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce. Qin, Hongjie,Zhang, Zhiyong,Liu, Minhui,Liu, Haiqin,Wang, Yan,Wen, Xuezheng,Zhang, Yingying,Yan, Shaohua.

[6]Efficient assimilation of cyanobacterial nitrogen by water hyacinth. Qin, Hongjie,Zhang, Zhiyong,Liu, Minhui,Wang, Yan,Wen, Xuezheng,Yan, Shaohua,Zhang, Yingying,Liu, Haiqin.

[7]USE OF FLOATING PLANTS FOR PURIFICATION OF HYPEREUTROPHIC FRESHWATER LAKE (CAOHAI BAY, DIANCHI LAKE, CHINA): A REVIEW OF ECOLOGICAL ENGINEERING MEASURES. Liu, Guo-Feng,Liu, Hong-Jiang,Zhang, Zhi-Yong. 2017

[8]Study on non-destructive estimation of nitrogen concentration of water hyacinth by hyperspectral data. Wang, Jingjing,Sun, Ling,Liu, Huazhou,Wang, Jingjing. 2016

[9]Monitoring biomass of water hyacinth by using hyperspectral remote sensing. Wang, Jingjing,Sun, Ling,Liu, Huazhou. 2012

[10]Promotion of the Growth and Quality of Chinese Cabbage by Application of Biogas Slurry of Water Hyacinth. Xue, Yanfeng,Shi, Zhiqi,Chen, Jian,Yan, Shaohua,Zheng, Jianchu. 2012

[11]Characteristics of Bacterial Communities in Cyanobacteria-Blooming Aquaculture Wastewater Influenced by the Phytoremediation with Water Hyacinth. Zhou, Qing,Chen, Ting,Han, Shiqun. 2017

[12]Dynamic Estimation of Water Hyacinth Area by Fusing Data from Satellite and GPS Sensors. Sun, Ling,Zhu, Zesheng. 2014

[13]Large-scale utilization of water hyacinth for nutrient removal in Lake Dianchi in China: The effects on the water quality, macrozoobenthos and zooplankton. Wang, Zhi,Zhang, Zhiyong,Zhang, Junqian,Zhang, Yingying,Liu, Haiqing,Yan, Shaohua,Wang, Zhi,Zhang, Junqian.

[14]Advances in management and utilization of invasive water hyacinth (Eichhornia crassipes) in aquatic ecosystems - a review. Yan, Shao-Hua,Song, Wei,Guo, Jun-Yao.

[15]Responses of periphyton morphology, structure, and function to extreme nutrient loading. Lu, Haiying,Feng, Yanfang,Yang, Linzhang,Lu, Haiying,Feng, Yanfang,Wu, Yonghong,Yang, Linzhang,Lu, Haiying,Shao, Hongbo,Wang, Jinhua.

[16]Vertical and horizontal assemblage patterns of bacterial communities in a eutrophic river receiving domestic wastewater in southeast China. Gao, Yan,Wang, Chengcheng,Zhang, Weiguo,Di, Panpan,Yi, Neng,Gao, Yan,Gao, Yan,Chen, Chengrong,Gao, Yan.

[17]N-15 isotope fractionation in an aquatic food chain: Bellamya aeruginosa (Reeve) as an algal control agent. Han, Shiqun,Yan, Shaohua,Zhang, Jianqiu,Song, Wei,Liu, Haiqin,Chen, Kaining,Zhang, Zhenhua,Zed, Rengel. 2010

[18]Effect of Eichhornia crassipes on production of N-2 by denitrification in eutrophic water. Gao, Yan,Yi, Neng,Wang, Yan,Ma, Tao,Zhou, Qing,Zhang, Zhenhua,Yan, Shaohua,Ma, Tao. 2014

[19]Response of the Growth of Vallisneria natans Under High Zn2+ Stress and Different NH4+/NO3- Ratios. Wang, Baozhong,Zhou, Lihua,Li, Susu,Wang, Baozhong,Zhang, Xia,Luo, Yanqing. 2015

[20]Dung and farm dairy effluent affect urine patch nitrous oxide emissions from a pasture. Shi, Y.,Wang, L.,Li, J.,Luo, J.,Ledgard, S.,Houlbrooke, D.,Lindsey, S.,Li, Y.,Bo, L.,Ma, Y..

作者其他论文 更多>>