您好,欢迎访问广东省农业科学院 机构知识库!

Adsorption of 2-mercaptobenzothiazole from aqueous solution by organo-bentonite

文献类型: 外文期刊

作者: Jing, Ping 1 ; Hou, Meifang 2 ; Zhao, Ping 1 ; Tang, Xiaoyan 2 ; Wan, Hongfu 2 ;

作者机构: 1.Chinese Acad Sci, South China Bot Garden, Guangzhou 510650, Guangdong, Peoples R China

2.Guangdong Inst Ecoenvironm & Soil Sci, Guangdong Key Lab Agr Environm Pollut Integrated, Guangzhou 510650, Guangdong, Peoples R China

3.Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China

关键词: 2-mercaptobenzothiazole;Bentonite;Intercalation;Adsorption

期刊名称:JOURNAL OF ENVIRONMENTAL SCIENCES ( 影响因子:5.565; 五年影响因子:5.066 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The adsorption behavior of 2-mercaptobenzothiazole onto organo-bentonite was investigated. Natural bentonite from Gaozhou in Guangdong Province, China was collected. Organo-bentonite was prepared by intercalation of cetyltrimethyl ammonium bromide into the natural bentonite. The physicochemical properties of the prepared organo-bentonite were characterized by X-ray diffraction, N_2 adsorption-desorption isotherm and Fourier transform infrared spectroscopy. The results showed that montmorillonite is the main component of the natural bentonite. The basal spacing of the natural bentonite is 1.47 nm, which increased to 1.98 nm on intercalation with cetyltrimethyl ammonium bromide. Moreover, both the surface area and pore volume increased with intercalation. Clear CH_2 stretching (3000-2800 cm~(-1)) and scissoring (1480-1450 cm~(-1)) modes of the intercalated surfactants were observed for organobentonite. Compared with the pseudo first-order kinetic model, the pseudo second-order kinetic model is more suitable to describe the adsorption kinetics of 2-mercaptobenzothiazole onto organo-bentonite. The adsorption capacity of 2-mercaptobenzothiazole onto organo-bentonite increased with increasing initial concentration of 2-mercaptobenzothiazole, but decreased with increasing adsorbent dosage. The adsorption isotherm of 2-mercaptobenzothiazole onto organo-bentonite fits well with the Langmuir model. The maximum adsorption capacity of organo-bentonite for 2-mercaptobenzothiazole was 33.61 mg/g, indicating that organo-bentonite is a promising adsorbent for 2-mercaptobenzothiazole.

  • 相关文献

[1]Removal of rhodamine B using iron-pillared bentonite. Hou, Mei-Fang,Zhang, Wei-De,Hou, Mei-Fang,Tang, Xiao-Yan,Fan, Yan-Ning,Wan, Hong-Fu,Ma, Cai-Xia.

[2]Enhanced photocatalytic activity of Ce3+-TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. Li, FB,Li, XZ,Hou, MF,Cheah, KW,Choy, WCH.

[3]Combined modification of clay with sulfhydryl and iron: Toxicity alleviation in Cr-contaminated soils for mustard (Brassica juncea) growth. Liu, Chengshuai,Fei, Yingheng,Liu, Chengshuai,Li, Fangbai,Chen, Manjia,Tong, Hui,Liu, Chuanping,Liao, Changzhong. 2017

[4]Photodegradation of 2-mercaptobenzothiazole in the iron oxides/oxalic acid/UVA system. Liu, CS,Gao, YX,Li, FB,Lei, J,Zhang, G,Kuang, YQ. 2006

[5]The effect of iron oxides and oxalate on the photodegradation of 2-mercaptobenzothiazole. Liu, CS,Li, FB,Li, XM,Zhang, G,Kuang, YQ.

[6]Adsorption and photocatalytic degradation of phenol over TiO2/ACF. Fan, CM,Min, YQ,Hao, XG,Sun, YP,Li, XJ,Li, FB. 2003

[7]Photocatalytic reaction kinetics model based on electrical double layer theory - II. Surface complexation model of methyl orange adsorption on TiO2 surface. Li, XJ,Li, FB,Gu, GB,Liu, S,Wang, LY,Liang, YY. 2003

[8]Simulation of adsorption of gold nanoparticles carried by gas ascending from the Earth's interior in alluvial cover of the middle-lower reaches of the Yangtze River. Cao, J. J.,Hu, X. Y.,Jiang, Z. T.,Li, H. W.,Zou, X. Z.. 2010

[9]Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor. Huang, Yufen,Li, Yanliang,Huang, Lianxi,Huang, Qing,Liu, Zhongzhen,Wei, Lan,Huang, Yufen,Li, Yanliang,Huang, Lianxi,Huang, Qing,Liu, Zhongzhen,Mar, Nyo Nyo.

[10]Impact of soil primary size fractions on sorption and desorption of atrazine on organo-mineral fractions. Liu, Zhongzhen,Li, Yanliang,Huang, Yufen,Liu, Zhongzhen,Li, Yanliang,He, Yan.

作者其他论文 更多>>