您好,欢迎访问广东省农业科学院 机构知识库!

Overexpression of mitochondrial uncoupling protein conferred resistance to heat stress and Botrytis cinerea infection in tomato

文献类型: 外文期刊

作者: Chen, Shuangchen 1 ; Liu, Airong 1 ; Zhang, Shaojie 1 ; Li, Cong 1 ; Chang, Rui 1 ; Liu, Dilin 3 ; Ahammed, Golam Jala 1 ;

作者机构: 1.Henan Univ Sci & Technol, Coll Forestry, Luoyang 471003, Peoples R China

2.Zhejiang Univ, Dept Hort, Hangzhou 310058, Zhejiang, Peoples R China

3.Guangdong Acad Agr Sci, Rice Res Inst, Guangzhou 510640, Guangdong, Peoples R China

关键词: Transgenic tomato;Redox signal;Mitochondrial uncoupling protein;Reactive oxygen species (ROS);Heat stress

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The mitochondrial uncoupling protein genes improve plant stress tolerance by minimizing oxidative damage. However, the underlying mechanism of redox homeostasis and antioxidant signaling associated with reactive oxygen species (ROS) accumulation remained poorly understood. We introduced LeUCP gene into tomato line Ailsa Craig via Agrobacterium-mediated method. Transgenic lines were confirmed for integration into the tomato genome using PCR and Southern blot hybridization. One to three copies of the transgene were integrated into the tomato nuclear genome. Transcription of LeUCP in various transgenic lines was determined using real-time PCR. Transgenic tomato overexpressing LeUCP showed higher growth rate, chlorophyll content, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching coefficient (q~P) and electron transport rate (ETR), increased contents of AsA and proline, higher AsA/DHA ratio and GalLDH activity, reduced ROS accumulation, and enhanced heat stress tolerance compared with the control plants. The transgenic tomato plants also exhibited significant increases in tolerance against the necrotrophic fungus Botrytis cinerea. Taken together, our results suggest that LeUCP may play a pivotal role in controlling a broad range of abiotic and biotic stresses in plants by increasing redox level and antioxidant capacity, elevating electron transport rate, lowering H_2O_2 and lipid peroxidation accumulation.

  • 相关文献

[1]Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination. Li, Wen-Yan,Chen, Bing-Xian,Chen, Zhong-Jian,Gao, Yin-Tao,Chen, Zhuang,Liu, Jun. 2017

[2]Genome-Wide Identification and Expression Profile of Dof Transcription Factor Gene Family in Pepper (Capsicum annuum L.). Wu, Zhiming,Bang, Guansheng,Cheng, Jiaowen,Cui, Junjie,Hu, Kailin,Xu, Xiaowan,Luo, Xirong,Chen, Xiaocui,Tang, Xiangqun,Qin, Cheng,Qin, Cheng. 2016

[3]Characterization of HSP70 and its expression in tissue: correlation with physiological and immune indices in goose (Anser cygnoides) serum. Zhang, W. W.,Zhang, X. Q.,Kong, L. N.,Luo, Q. B.,Zhang, W. W.,Xiao, X.,Gan, J. K.,Zhang, X. Q.,Kong, L. N.,Luo, Q. B.. 2015

[4]Heat stress inhibits proliferation, promotes growth, and induces apoptosis in cultured Lantang swine skeletal muscle satellite cells. Gao, Chun-qi,Zhao, Yin-ling,Sui, Wei-guo,Yan, Hui-chao,Wang, Xiu-qi,Li, Hai-chang. 2015

[5]Effects of heat stress on gene expression in eggplant (Solanum melongema L.) seedlings. Li, Yanyan,Li, Zhiliang,Li, Zhenxing,Luo, Shaobo,Sun, Baojuan,Li, Yanyan. 2011

[6]Heat stress impairs the nutritional metabolism and reduces the productivity of egg-laying ducks. Ma, Xianyong,Lin, Yingcai,Zhang, Hanxing,Chen, Wei,Wang, Shang,Ruan, Dong,Jiang, Zongyong,Ma, Xianyong,Lin, Yingcai,Zhang, Hanxing,Chen, Wei,Wang, Shang,Ruan, Dong,Jiang, Zongyong,Ma, Xianyong,Lin, Yingcai,Zhang, Hanxing,Chen, Wei,Wang, Shang,Ruan, Dong,Jiang, Zongyong. 2014

[7]Integrating Small RNA Sequencing with QTL Mapping for Identification of miRNAs and Their Target Genes Associated with Heat Tolerance at the Flowering Stage in Rice. Liu, Qing,Yang, Tifeng,Zhang, Shaohong,Mao, Xingxue,Zhao, Junliang,Wang, Xiaofei,Dong, Jingfang,Liu, Bin,Liu, Qing,Yang, Tifeng,Zhang, Shaohong,Mao, Xingxue,Zhao, Junliang,Wang, Xiaofei,Dong, Jingfang,Liu, Bin,Yu, Ting. 2017

[8]Strong, sudden cooling alleviates the inflammatory responses in heat-stressed dairy cows based on iTRAQ proteomic analysis. Cheng, Jianbo,Fan, Caiyun,Cheng, Jianbo,Min, Li,Zheng, Nan,Zhao, Shengguo,Zhang, Yangdong,Wang, Jiaqi,Min, Li. 2018

[9]Comparative Transcriptome Analysis Reveals Differential Transcription in Heat-susceptible and Heat-tolerant Pepper (Capsicum annum L.) Cultivars under Heat Stress. Li, Tao,Xu, Xiaowan,Li, Ying,Wang, Hengming,Li, Zhiliang,Li, Zhenxing,Li, Tao,Xu, Xiaowan.

[10]Genome-wide analysis of gene expression profiles during early ear development of sweet corn under heat stress. Li, Yuliang,Hu, Jianguang,Liu, Jianhua,Suo, Haicui,Yu, Yongtao,Han, Fuguang.

[11]The association of SNPs in Hsp90 beta gene 5 ' flanking region with thermo tolerance traits and tissue mRNA expression in two chicken breeds. Chen, Zhuo-Yu,Gan, Jian-Kang,Xiao, Xiong,Jiang, Li-Yan,Zhang, Xi-Quan,Luo, Qing-Bin,Chen, Zhuo-Yu,Gan, Jian-Kang,Xiao, Xiong,Jiang, Li-Yan,Zhang, Xi-Quan,Luo, Qing-Bin.

作者其他论文 更多>>