您好,欢迎访问广东省农业科学院 机构知识库!

Structural elucidation and cellular antioxidant activity evaluation of major antioxidant phenolics in lychee pulp

文献类型: 外文期刊

作者: Su, Dongxiao 1 ; Ti, Huihui 1 ; Zhang, Ruifen 1 ; Zhang, Mingwei 1 ; Wei, Zhengchen 1 ; Deng, Yuanyuan 1 ; Guo, Jinxin 1 ;

作者机构: 1.Guangdong Acad Agr Sci, Minist Agr, Key Lab Funct Foods, Sericultural & Agri Food Res Inst, Guangzhou 510610, Guangdong, Peoples R China

2.Huazhong Agr Univ, Dept Food Sci & Technol, Wuhan 430070,

关键词: Lychee;Phenolics;Quercetin 3-0-rutinoside-7-O-α-L-rhamnosidase;Antioxidant activity;Cellular antioxidant activity;Oxygen radical absorbance capacity

期刊名称:FOOD CHEMISTRY ( 影响因子:7.514; 五年影响因子:7.516 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Lychee pulp contains phenolic compounds that are strong antioxidants, but the identities of the major antioxidants present are unknown. In the present study, the major contributors to the antioxidant activity of fresh lychee pulp were identified and their cellular antioxidant activities were investigated. Aqueous acetone extracts of lychee pulp were fractionated on polyamide resin, and those fractions with the largest antioxidant and radical scavenging activities were selected using cellular antioxidant activity and oxygen radical absorbance capacity assays. Three compounds that were major contributors to the antioxidant activity in these fractions were obtained by reverse-phase preparative HPLC and identified as quercetin 3-O-rutinoside-7-O-α-L-rhamnosidase (quercetin 3-rut-7-rha), quercetin 3-0-rutinoside (rutin) and (-)-epicatechin using NMR spectroscopy, HMBC, and ES1-MS spectrometry. The concentration of quercetin 3-rut-7-rha was 17.25 mg per 100 g of lychee pulp fresh weight. This is the first report of the identification and cellular antioxidant activity of quercetin 3-rut-7-rha from lychee pulp.

  • 相关文献

[1]Effect of degree of milling on phenolic profiles and cellular antioxidant activity of whole brown rice. Liu, Lei,Guo, Jinjie,Zhang, Ruifen,Wei, Zhencheng,Deng, Yuanyuan,Guo, Jinxin,Zhang, Mingwei.

[2]Phenolics and Antioxidant Activity of Mulberry Leaves Depend on Cultivar and Harvest Month in Southern China. Zou, Yuxiao,Sun, Yuanming,Zou, Yuxiao,Liao, Shentai,Shen, Weizhi,Liu, Fan,Tang, Cuiming,Chen, Chung-Yen Oliver. 2012

[3]Different effects of extrusion on the phenolic profiles and antioxidant activity in milled fractions of brown rice. Zhang, Ruifen,Khan, Sher Ali,Chi, Jianwei,Wei, Zhencheng,Zhang, Yan,Deng, Yuanyuan,Liu, Lei,Zhang, Mingwei. 2018

[4]Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. Zhao, Guanghe,Zhang, Ruifen,Zhao, Guanghe,Zhang, Ruifen,Dong, Lihong,Huang, Fei,Tang, Xiaojun,Wei, Zhencheng,Zhang, Mingwei. 2018

[5]Phenolic Profiles and Antioxidant Activity of Litchi (Litchi Chinensis Sonn.) Fruit Pericarp from Different Commercially Available Cultivars. Li, Wu,Liang, Hong,Zhang, Ming-Wei,Zhang, Rui-Fen,Deng, Yuan-Yuan,Wei, Zhen-Cheng,Zhang, Yan,Tang, Xiao-Jun. 2012

[6]Phenolic Composition and Antioxidant Activity in Seed Coats of 60 Chinese Black Soybean (Glycine max L. Merr.) Varieties. Zhang, Rui Fen,Zhang, Fang Xuan,Zhang, Ming Wei,Wei, Zhen Cheng,Yang, Chun Ying,Zhang, Yan,Tang, Xiao Jun,Deng, Yuan Yuan,Chi, Jian Wei. 2011

[7]Different thermal drying methods affect the phenolic profiles, their bioaccessibility and antioxidant activity in Rhodomyrtus tomentosa (Ait.) Hassk berries. Zhao, Guanghe,Zhang, Ruifen,Liu, Lei,Deng, Yuanyuan,Wei, Zhencheng,Zhang, Yan,Ma, Yongxuan,Zhang, Mingwei,Zhao, Guanghe,Zhang, Ruifen,Liu, Lei,Deng, Yuanyuan,Wei, Zhencheng,Zhang, Yan,Ma, Yongxuan,Zhang, Mingwei,Zhao, Guanghe,Zhang, Ruifen.

[8]Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China. Ti, Huihui,Li, Qing,Zhang, Ruifen,Zhang, Mingwei,Deng, Yuanyuan,Wei, Zhencheng,Chi, Jianwei,Zhang, Yan.

[9]Phenolic Profiles and Antioxidant Activity of Black Rice Bran of Different Commercially Available Varieties. Zhang, Ming Wei,Liu, Rui Hai,Zhang, Ming Wei,Zhang, Rui Feng,Zhang, Fang Xuan,Liu, Rui Hai.

[10]Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages. Ti, Huihui,Zhang, Ruifen,Zhang, Mingwei,Li, Qing,Wei, Zhencheng,Zhang, Yan,Tang, Xiaojun,Deng, Yuanyuan,Liu, Lei,Ma, Yongxuan.

[11]Effects of cooking and in vitro digestion of rice on phenolic profiles and antioxidant activity. Ti, Huihui,Zhang, Ruifen,Li, Qing,Wei, Zhencheng,Zhang, Mingwei.

[12]Phenolic content and antioxidant activity of eight representative sweet corn varieties grown in South China. Zhang, Ruifen,Huang, Long,Deng, Yuanyuan,Chi, Jianwei,Zhang, Yan,Wei, Zhencheng,Zhang, Mingwei,Zhang, Ruifen. 2017

[13]Dissipation and Residue of Myclobutanil in Lychee. Liu, Yanping,Liu, Fengmao,Liu, Yanping,Sun, Haibin,Wang, Siwei. 2012

[14]Lychee (Litchi chinensis Sonn.) Pulp Phenolic Extract Provides Protection against Alcoholic Liver Injury in Mice by Alleviating Intestinal Microbiota Dysbiosis, Intestinal Barrier Dysfunction, and Liver Inflammation. Xiao, Juan,Zhang, Ruifen,Liu, Lei,Huang, Fei,Deng, Yuanyuan,Ma, Yongxuan,Wei, Zhencheng,Tang, Xiaojun,Zhang, Mingwei,Zhou, Qiuyun.

[15]Molecular cloning, expression, and subcellular localization of a PAL gene from Citrus reticulata under iron deficiency. Yang, H. Y.,Wang, M. Y.,Dong, T.,Li, J. F..

[16]Effect of thermal processing on phenolic profiles and antioxidant activities in Castanea mollissima. Liu, Fengyuan,Hu, Xiaodan,Guo, Xinbo,Chang, Xiaoxiao,Brennan, Charles S.,Guo, Xinbo.

[17]Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile. Wei, Zhong,Wang, Xueqi,Wang, Xiaofang,Mei, Xinlan,Xu, Yangchun,Shen, Qirong,Jousset, Alexandre,Friman, Ville-Petri,Huang, Jianfeng,Jousset, Alexandre.

[18]Mulberry leaf phenolics ameliorate hyperglycemia-induced oxidative stress and stabilize mitochondrial membrane potential in HepG2 cells. Zou, Yu-Xiao,Shen, Wei-Zhi,Liao, Sen-Tai,Liu, Fan,Zheng, Shan-Qing,Zou, Yu-Xiao,Blumberg, Jeffrey B.,Chen, C. -Y. Oliver.

[19]Extraction, molecular weight distribution, and antioxidant activity of oligosaccharides from longan (Dimocarpus Longan Lour.) pulp. Lin, Xian,Chen, Jinling,Xiao, Gengsheng,Xu, Yujuan,Tang, Daobang,Wu, Jijun,Wen, Jing,Chen, Weidong. 2016

[20]Optimized ultra-high-pressure-assisted extraction of procyanidins from lychee pericarp improves the antioxidant activity of extracts. Zhang, Ruifen,Zhang, Mingwei,Su, Dongxiao,Zhang, Ruifen,Liu, Lei,Huang, Fei,Dong, Lihong,Deng, Yuanyuan,Zhang, Yan,Wei, Zhencheng,Zhang, Mingwei,Hou, Fangli. 2017

作者其他论文 更多>>