您好,欢迎访问江苏省农业科学院 机构知识库!

Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari

文献类型: 外文期刊

作者: Yang, Bo 1 ; Ma, Hai-Yan 1 ; Wang, Xiao-Mi 1 ; Jia, Yong 1 ; Hu, Jing 1 ; Li, Xia 2 ; Dai, Chuan-Chao 1 ;

作者机构: 1.Nanjing Normal Univ, Coll Life Sci, Jiangsu Engn & Technol Res Ctr Ind Microbial Reso, Jiangsu Key Lab Microbes & Funct Genom, Nanjing 210023, Jiangsu, Peoples R China

2.Jiangsu Ac

关键词: Fungal endophyte;Nitrogen accumulation;Nitrogen metabolism;Rice;Symbiosis

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The fungal endophyte Phomopsis liquidambari can enhance nitrogen (N) uptake and metabolism of rice plants under hydroponic conditions. To investigate the effects of P. liquidambari on N accumulation and metabolism in rice (Oryza sativa L.) under field conditions during the entire growing season (S1, the seedling stage;S2, the tillering stage;S3, the heading stage;S4, the ripening stage), we utilized pot experiments to examine metabolic and physiological levels in both shoot and root tissues of rice, with endophyte (E+) and without endophyte (E-), in response to three different N levels. We found that under low-N treatment, P. liquidambari symbiosis increased the rice yield and N use efficiency by 12% and by 11.59%, respectively;that the total N contents in E+ rice plants at the four growth stages were separately increased by 29.05%, 14.65%, 21.06% and 18.38%, respectively;and that the activities of nitrate reductase and glutamine synthetase in E+ rice roots and shoots were significantly increased by fungal infection during the S1 to S3 stages. Moreover, P. liquidambari significantly increased the free NH_4~+, NO_3~-, amino acid and soluble protein contents in infected rice tissues under low-N treatment during the S1 to S3 stages. The obtained results offer novel data concerning the systemic changes induced by P. liquidambari in rice during the entire growth period and confirm the hypothesis that the rice eP. liquidambari interaction improved the N accumulation and metabolism of rice plants, consequently increasing rice N utilization in nutrient-limited soil.

  • 相关文献

[1]Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Yang, Bo,Wang, Xiao-Mi,Ma, Hai-Yan,Jia, Yong,Dai, Chuan-Chao,Li, Xia.

[2]Extensive host range of an endophytic fungus affects the growth and physiological functions in rice (Oryza sativa L.). Yuan, Zhi-Lin,Dai, Chuan-Chao,Li, Xia,Tian, Lin-Shuang,Wang, Xing-Xiang. 2007

[3]Horizontal transfer of facultative endosymbionts is limited by host relatedness. Lukasik, Piotr,Guo, Huifang,van Asch, Margriet,Henry, Lee M.,Godfray, H. Charles J.,Ferrari, Julia,Guo, Huifang,Ferrari, Julia.

[4]Calcium involved in the poly(gamma-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism. Xu, Zongqi,Lei, Peng,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong,Xu, Zongqi,Lei, Peng,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong,Xu, Xianju,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong. 2014

[5]Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Chen, G.,Fan, P. S.,Feng, W. M.,Guan, A. Q.,Lu, Y. Y.,Wan, Y. L..

[6]Isolation, cloning, and expression of five genes related to nitrogen metabolism in peach (Prunus persica L. Batsch). Zhang, C. H.,Zhang, B. B.,Yu, M. L.,Ma, R. J.,Song, Z. Z.,Korir, N. K..

[7]Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress. Xu, Jianwen,Huang, Xi,Lan, Hongxia,Zhang, Hongsheng,Huang, Ji,Xu, Jianwen.

[8]Practice and thoughts on developing hybrid rice for super high yield by exploiting intersubspecific heterosis. Zou Jiang-shi,Lu Chuan-gen. 2009

[9]Functional Marker Development and Effect Analysis of Grain Size Gene GW2 in Extreme Grain Size Germplasm in Rice. Zhang Ya-dong,Zheng Jia,Liang Yan-li,Zhao Chun-fang,Chen Tao,Zhao Qing-yong,Zhu Zhen,Zhou Li-hui,Yao Shu,Zhao Ling,Yu Xing,Wang Cai-lin. 2015

[10]Correlation between appearance of embryogenic cells and the IAA levels in rice somatic cell culture. Chen, YF,Zhou, X,Tang, RS,Zhang, JY,Mei, CS. 1998

[11]Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. Meng, Xiaoxi,Lv, Yuanda,Mujahid, Hana,Peng, Zhaohua,Lv, Yuanda,Zhao, Han,Edelmann, Mariola J.,Peng, Xiaojun. 2018

[12]Identification of QTL Associated with Nitrogen Uptake and Nitrogen Use Efficiency Using High Throughput Genotyped CSSLs in Rice (Oryza sativa L.). Zhou, Yong,Tao, Yajun,Tang, Dongnan,Zhong, Jun,Wang, Yi,Yuan, Qiumei,Yu, Xiaofeng,Zhang, Yan,Wang, Yulong,Liang, Guohua,Dong, Guichun,Wang, Jun. 2017

[13]Changes in unsaturated levels of fatty acids in thylakoid PSII membrane lipids during chilling-induced resistance in rice. Zhu, Su-Qin,Yu, Chun-Mei,Liu, Xin-Yan,Ji, Ben-Hua,Jiao, De-Mao. 2007

[14]Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice. Li, Wenqi,Shao, Min,Qian, Guoliang,Liu, Fengquan,Li, Wenqi,Yang, Jie,Zhong, Weigong,Li, Wenqi,Shao, Min,Qian, Guoliang,Liu, Fengquan,Okada, Kazunori,Yamane, Hisakazu. 2013

[15]Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.). Rana, R. M.,Dong, S.,Huang, J.,Zhang, H. S.,Rana, R. M.,Ali, Z.,Ali, Z.. 2012

[16]Morphology and photosynthetic enzyme activity of maize phosphoenolpyruvate carboxylase transgenic rice. Li, W. C.,Wang, J.,Sun, Y. L.,Ji, S. D.,Guo, S. W.. 2015

[17]Identification of an active Mutator-like element (MULE) in rice (Oryza sativa). Gao, Dongying,Gao, Dongying. 2012

[18]Verification and evaluation of grain QTLs using RILs from TD70 x Kasalath in rice. Zhang, Y. D.,Liang, Y. L.,Wang, C. L.,Zhang, Y. D.,Zheng, J.,Wang, C. L.,Liang, Z. K.,Peng, Z. H.. 2015

[19]Rice growth monitoring using simulated compact polarimetric C band SAR. Yang, Zhi,Li, Kun,Liu, Long,Shao, Yun,Yang, Zhi,Liu, Long,Brisco, Brian,Li, Weiguo. 2014

[20]Simulating the optimal growing season of rice in the Yangtze River Valley and its adjacent area, China. Huang, Y,Gao, LZ,Jin, ZQ,Chen, H. 1998

作者其他论文 更多>>