您好,欢迎访问吉林省农业科学院 机构知识库!

Sequencing of the chloroplast genomes of cytoplasmic male-sterile and male-fertile lines of soybean and identification of polymorphic markers

文献类型: 外文期刊

作者: Lin, Chunjing 1 ; Zhang, Chunbao 2 ; Zhao, Hongkun 2 ; Xing, Shaochen 2 ; Wang, Yumin 2 ; Liu, Xiaodong 2 ; Yuan, Cuip 1 ;

作者机构: 1.Northeast Agr Univ, Coll Agr, Harbin 150030, Peoples R China

2.Jilin Acad Agr Sci, Changchun 130033, Peoples R China

3.Natl Engn Res Ctr Soybean, Changchun 130033, Peoples R China

关键词: Soybean;Cytoplasmic male sterility;Sterile line;Maintainer line;Molecular marker

期刊名称:PLANT SCIENCE ( 影响因子:4.729; 五年影响因子:5.132 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The RN-type cytoplasmic male sterility (CMS) system used to develop Hybsoy-1, the first commercial hybrid soybean, has been subsequently applied to generate nearly all released soybean hybrids. Although more than 3 years are needed to classify sterile (S) and normal male-fertile (F) cytoplasms by conventional crossing, such classifications can be performed rapidly using organellar DNA-based molecular markers. Except for fertility, the agronomic traits of CMS hybrid soybean sterile and maintainer lines are identical. Consequently, it is difficult to distinguish them by routine visual inspection in the mixture arising in the course of field planting and harvesting during breeding. In this study, we performed next-generation sequencing of chloroplast DNAs of F- and S-cytoplasmic soybeans, assembled and annotated the genomes, and identified polymorphisms distinguishing them. Chloroplast DNAs of F and S cytoplasms were very similar in size (152,215 and 152,222 base pairs) and GC contents (35.37%). Among 23 shared SNPs in gene coding regions, we identified four that could be used in conjunction with restriction endonucleases to distinguish S and F cytoplasms. Although CMS is likely associated with mitochondrial DNA, maternal transmission of mitochondrial and chloroplast DNAs allows polymorphisms in either genome to be used to classify soybean cytoplasms, aiding hybrid soybean cultivar development. (C) 2014 Elsevier Ireland Ltd. All rights reserved.

  • 相关文献

[1]Application of SSR Markers for Purity Testing of Commercial Hybrid Soybean (Glycine max L.). Zhang, C. B.,Peng, B.,Zhang, W. L.,Wang, S. M.,Sun, H.,Dong, Y. S.,Zhao, L. M.,Zhang, C. B.,Peng, B.,Zhang, W. L.,Wang, S. M.,Sun, H.,Dong, Y. S.,Zhao, L. M.. 2014

[2]Quantitative trait loci analysis of soluble sugar contents in soybean. Wang, Yueqiang,Chen, Pengyin,Zhang, Bo.

[3]Molecular mapping of a fertility restorer gene for cytoplasmic male sterility in soybean. Wang, Y.,Wang, X.,Wang, Y.,Zhao, L.,Sun, H..

[4]Selection of soybean elite cultivars based on phenotypic and genomic characters related to lodging tolerance. Liu, Zhangxiong,Li, Huihui,Li, Yinghui,Qiu, Lijuan,Fan, Xuhong,Zheng, Yuhong,Wang, Shuming,Huang, Wen,Yang, Jiyu,Wen, Zixiang,Wang, Dechun.

[5]Phenotypic characterization and genetic dissection of nine agronomic traits in Tokachi nagaha and its derived cultivars in soybean (Glycine max (L.) Merr.). Liu, Zhangxiong,Li, Huihui,Li, Yinghui,Guan, Rongxia,Guo, Yong,Chang, Ruzhen,Qiu, Li-Juan,Fan, Xuhong,Wang, Shuming,Huang, Wen,Yang, Jiyu,Wen, Zixiang,Wang, Dechun,Chen, Pengyin.

[6]A Comparative Proteomics Analysis of Soybean Cotyledon and Unifoliolate Leaves Under Heat (Chilling) Treatments. Jiang, Hong-wei,Xin, Da-wei,Shan, Cai-yun,Wang, Jin-hui,Chen, Qing-shan,Jiang, Hong-wei,Liu, Chun-yan,Hu, Guo-hua,Xin, Da-wei,Zhu, Rong-sheng,Hu, Zhen-bang,Chen, Qing-shan,Qiu, Hong-mei.

[7]Genome-wide identification and expression analysis of the CPP-like gene family in soybean. Zhang, L.,Wang, Y. M.,Yuan, C. P.,Zhang, Y. Y.,Li, H. Y.,Dong, Y. S.,Zhao, H. K.,Yan, X. F.,Li, Q. Y.. 2015

[8]RNAi-mediated SMV P3 cistron silencing confers significantly enhanced resistance to multiple Potyvirus strains and isolates in transgenic soybean. Yang, Xiangdong,Niu, Lu,Zhang, Wei,Yang, Jing,Xing, Guojie,He, Hongli,Guo, Dongquan,Du, Qian,Qian, Xueyan,Yao, Yao,Li, Qiyun,Dong, Yingshan. 2018

[9]Assessing the numbers of SNPs needed to establish molecular IDs and characterize the genetic diversity of soybean cultivars derived from Tokachi nagaha. Liu, Zhangxiong,Htwe, Nang Myint Phyu Sin,Xing, Lili,Li, Yinghui,Guan, Rongxia,Chang, Ruzhen,Qiu, Lijuan,Li, Jun,Fa, Xuhong,Wang, Shuming,Huang, Wen,Yang, Jiyu,Chen, Lijun,Wang, Dechun. 2017

[10]Adaptation and Application of Soybean Phenology Model in the North China Spring Soybean Producing Area. Wang, Can,Zhang, Baogui,Yan, Xiaoyan. 2012

[11]Effects of wheat and soybean stubbles on soil sickness in continuous cropping of cucumber. Feng, T.,Wang, Y. Y.,Zhang, Y. H.,Shi, X. H.,Qin, C. H.,Zhang, S. A.,Jin, S. C.,Zhang, H.,Zhang, J.,Zhang, S. A.,Zhang, J.,Qin, C. H.. 2016

[12]Stability of growth periods traits for soybean cultivars across multiple locations. Liu Zhang-xiong,Chang Ru-zhen,Qiu Li-juan,Wang Xiao-bo,Yang Chun-yan,Xu Ran,Zhang Li-feng,Lu Wei-guo,Wang Qian,Wei Su-hong,Yang Chun-ming,Wang Hui-cai,Wang Rui-zhen,Zhou Rong,Chen Huai-zhu. 2016

[13]Comparison of Genetic Diversity between Chinese and American Soybean (Glycine max (L.)) Accessions Revealed by High-Density SNPs. Liu, Zhangxiong,Li, Huihui,Li, Yinghui,Guan, Rongxia,Guo, Yong,Qiu, Lijuan,Wen, Zixiang,Wang, Dechun,Fan, Xuhong,Wang, Shuming. 2017

[14]Stability analysis of seven agronomic traits for soybean [(Glycine max (L.) Merr.] Tokachi nagaha and its derived cultivars using the AMMI model. Liu, Zhangxiong,Qiu, Lijuan,Fan, Xuhong,Zheng, Yuhong,Wang, Shuming,Huang, Wen,Yang, Jiyu. 2017

[15]Aspects of soybean insect resistance breeding in China. Wang, S. 2004

[16]Flavor characteristic analysis of soymilk prepared by different soybean cultivars and establishment of evaluation method of soybean cultivars suitable for soymilk processing. Shi Xiaodi,Li Jingyan,Guo Shuntang,Wang Shuming,Zhang Lei,Qiu Lijuan,Han Tianfu,Wang Qianyu,Chang Sam Kow-Ching.

[17]RNA-seq Analysis Reveals Ethylene-Mediated Reproductive Organ Development and Abscission in Soybean (Glycine max L. Merr.). Cheng, Yun-Qing,Liu, Jian-Feng,Liu, Chunming,Liu, Qiang,Yang, Xiangdong,Ma, Rui.

[18]Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Zhao, J,Fu, JB,Liao, H,He, Y,Nian, H,Hu, YM,Qiu, LJ,Dong, YS,Yan, XL.

[19]Nitrogen manipulation affects leaf senescence during late seed filling in soybean. Islam, Md. Matiul,Islam, Md. Matiul,Ishibashi, Yushi,Iwaya-Inoue, Mari,Nakagawa, Andressa C. S.,Tomita, Yuki,Zhao, Xin,Arima, Susumu,Zheng, Shao-Hui.

[20]Robust RNAi-mediated resistance to infection of seven potyvirids in soybean expressing an intron hairpin NIb RNA. Yang, Xiangdong,Niu, Lu,Zhang, Wei,He, Hongli,Yang, Jing,Xing, Guojie,Guo, Dongquan,Du, Qian,Qian, Xueyan,Yao, Yao,Li, Qiyun,Dong, Yingshan.

作者其他论文 更多>>