您好,欢迎访问江苏省农业科学院 机构知识库!

Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated [CO2]

文献类型: 外文期刊

作者: Zhu, Chunwu 1 ; Zhu, Jianguo 1 ; Cao, Jing 2 ; Jiang, Qian 1 ; Liu, Gang 1 ; Ziska, Lewis H. 3 ;

作者机构: 1.Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Jiangsu, Peoples R China

2.Jiangsu Acad Agr Sci, Inst Agr Econ & Informat, Nanjing 210014, Jiangsu, Peoples R China

3.USDA ARS, Crop Syst & Global Change Lab, Beltsville, MD 20705 USA

关键词: Elevated CO2;panicle;photosynthetic capacity;rice;sink;source

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Understanding the basis for intraspecific yield variability may be important in elucidating biological mechanisms that are associated with superior yield performance in response to projected increases in carbon dioxide concentration, [CO2]. Using a free-air CO2 enrichment (FACE) facility, two rice lines, S63 and W14, which differed consistently in their enhancement of seed yield when grown at elevated [CO2] in multiple field trials, were examined. To determine if the different cultivar responses were linked to changes in photosynthetic characteristics at elevated [CO2], spatial and temporal changes in photosynthetic stimulation and the occurrence of down-regulation, or acclimation, in relation to panicle sink development were quantified for the uppermost canopy leaves. Changes in photosynthetic capacity were determined by quantifying changes in the sink: source ratio, leaf nitrogen (N) content, the concentration and mRNA expression of the large Rubisco subunit, and changes in V-c,V-max, the maximum ribulose bisphosphate (RuBP)-saturated rate of carboxylation. For the W14 cultivar, significant reductions in photosynthesis at the elevated, relative to ambient [CO2], signalling photosynthetic acclimation, were observed following panicle initiation. The observance of photosynthetic acclimation was consistent with significant reductions in N, Rubisco content and expression, and V-c,V-max. In contrast, for the cultivar S63, elevated [CO2] resulted in increased spikelet number and grain weight, increased sink: source ratios, and continued stimulation of photosynthesis up to grain maturity. Overall, these data suggest that the greater response of the S63 line to elevated [CO2] may be associated with enhanced carbon sinks relative to sources, and the ability to maintain photosynthetic capacity during grain development.

  • 相关文献

[1]Practice and thoughts on developing hybrid rice for super high yield by exploiting intersubspecific heterosis. Zou Jiang-shi,Lu Chuan-gen. 2009

[2]Functional Marker Development and Effect Analysis of Grain Size Gene GW2 in Extreme Grain Size Germplasm in Rice. Zhang Ya-dong,Zheng Jia,Liang Yan-li,Zhao Chun-fang,Chen Tao,Zhao Qing-yong,Zhu Zhen,Zhou Li-hui,Yao Shu,Zhao Ling,Yu Xing,Wang Cai-lin. 2015

[3]Correlation between appearance of embryogenic cells and the IAA levels in rice somatic cell culture. Chen, YF,Zhou, X,Tang, RS,Zhang, JY,Mei, CS. 1998

[4]Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. Meng, Xiaoxi,Lv, Yuanda,Mujahid, Hana,Peng, Zhaohua,Lv, Yuanda,Zhao, Han,Edelmann, Mariola J.,Peng, Xiaojun. 2018

[5]Identification of QTL Associated with Nitrogen Uptake and Nitrogen Use Efficiency Using High Throughput Genotyped CSSLs in Rice (Oryza sativa L.). Zhou, Yong,Tao, Yajun,Tang, Dongnan,Zhong, Jun,Wang, Yi,Yuan, Qiumei,Yu, Xiaofeng,Zhang, Yan,Wang, Yulong,Liang, Guohua,Dong, Guichun,Wang, Jun. 2017

[6]Changes in unsaturated levels of fatty acids in thylakoid PSII membrane lipids during chilling-induced resistance in rice. Zhu, Su-Qin,Yu, Chun-Mei,Liu, Xin-Yan,Ji, Ben-Hua,Jiao, De-Mao. 2007

[7]Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice. Li, Wenqi,Shao, Min,Qian, Guoliang,Liu, Fengquan,Li, Wenqi,Yang, Jie,Zhong, Weigong,Li, Wenqi,Shao, Min,Qian, Guoliang,Liu, Fengquan,Okada, Kazunori,Yamane, Hisakazu. 2013

[8]Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.). Rana, R. M.,Dong, S.,Huang, J.,Zhang, H. S.,Rana, R. M.,Ali, Z.,Ali, Z.. 2012

[9]Morphology and photosynthetic enzyme activity of maize phosphoenolpyruvate carboxylase transgenic rice. Li, W. C.,Wang, J.,Sun, Y. L.,Ji, S. D.,Guo, S. W.. 2015

[10]Identification of an active Mutator-like element (MULE) in rice (Oryza sativa). Gao, Dongying,Gao, Dongying. 2012

[11]Verification and evaluation of grain QTLs using RILs from TD70 x Kasalath in rice. Zhang, Y. D.,Liang, Y. L.,Wang, C. L.,Zhang, Y. D.,Zheng, J.,Wang, C. L.,Liang, Z. K.,Peng, Z. H.. 2015

[12]Rice growth monitoring using simulated compact polarimetric C band SAR. Yang, Zhi,Li, Kun,Liu, Long,Shao, Yun,Yang, Zhi,Liu, Long,Brisco, Brian,Li, Weiguo. 2014

[13]Simulating the optimal growing season of rice in the Yangtze River Valley and its adjacent area, China. Huang, Y,Gao, LZ,Jin, ZQ,Chen, H. 1998

[14]Physiological basis of photosynthetic tolerance to photooxidation and shading in rice. Li, X,Jiao, DM. 2000

[15]Comparative Proteomic Analysis of Susceptible and Resistant Rice Plants during Early Infestation by Small Brown Planthopper. Chen, Jianping,Dong, Yan,Yang, Yong,Wang, Xuming,Yu, Chulang,Zhou, Jie,Yan, Chengqi,Chen, Jianping,Fang, Xianping,Fang, Xianping,Xue, Gang-Ping,Chen, Xian,Zhang, Weilin,Mei, Qiong,Fang, Wang. 2017

[16]Genetic and molecular analysis of a purple sheath somaclonal mutant in japonica rice. Gao, Dongying,He, Bing,Sun, Lihua,Zhou, Yihong. 2011

[17]Performance and Analysis of a Model for Describing Layered Leaf Area Index of Rice. Lue Chuan-gen,Yao Ke-min,Hu Ning. 2011

[18]High/low nitrogen adapted hybrid of rice cultivars and their physiological responses. Li Xia,Sun Zhiwei,Jin Lei,Han Lei,Ren Chenggang,Wang Man,Lu Chuangen. 2011

[19]Genetic Improvement of Japonica Rice Variety Wuyujing 3 for Stripe Disease Resistance and Eating Quality by Pyramiding Stv-b(i) and Wx-mq. Chen Tao,Wu Hao,Zhang Ya-dong,Zhu Zhen,Zhao Qi-yong,Zhou Li-hui,Yao Shu,Zhao Ling,Yu Xin,Zhao Chun-fang,Wang Cai-lin,Chen Tao. 2016

[20]The existence of C-4-bundle-sheath-like photosynthesis in the mid-vein of C-3 rice. Shen, Weijun,Ye, Luhuan,Ma, Jing,Yuan, Zhongyuan,Zheng, Baogang,Zhu, Ziqiang,Gao, Zhiping,Chen, Guoxiang,Lv, Chuangen,Chen, Xiang. 2016

作者其他论文 更多>>