您好,欢迎访问吉林省农业科学院 机构知识库!

Identification of QTLs associated with salt or alkaline tolerance at the seedling stage in rice under salt or alkaline stress

文献类型: 外文期刊

作者: Liang, Jing-long 1 ; Qu, Ying-ping 2 ; Yang, Chun-gang; Ma, Xiao-ding 2 ; Cao, Gui-lan 2 ; Zhao, Zheng-wu 1 ; Zhang 1 ;

作者机构: 1.Chongqing Normal Univ, Coll Life Sci, Chongqing 400047, Peoples R China

2.Chinese Acad Agr Sci, Natl Key Facil Crop Gene Resources & Genet Improv, NFCRI Key Lab Crop Germplasm Resources & Biotechn, Inst Crop Sci,Minist Agr, Beijing 100081, Peoples R China

3.Chinese Acad Agr Sci, Natl Key Facil Crop Gene Resources & Genet Improv,

关键词: Rice;Salt stress;Alkaline stress;Quantitative trait locus (QTL);Simple repetitive sequence (SSR)

期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The QTL analysis of dead leaf rate (DLR) and dead seedling rate (DSR) during the seedling stage under salt or alkaline stress were conducted, in order to provide the scientific basis for the fine mapping and cloning of QTLs associated with salt or alkaline tolerance, and for the salt or alkaline tolerance of SSR marker assisted rice breeding. The recombinant inbred line (RIL) population F-8 including 200 lines derived from the cross "Yiai 1 x Lishuinuo" were used in the study. The DLR and DSR of RIL and its parents were evaluated under 1.5 % NaCl of salt stress and pH8.7 to pH8.9 of alkaline stress, respectively. The results showed that DLR was a quantitative trait controlled by multiple genes, and DSR was a quantitative trait controlled by a few major genes and many other minor genes together under salt stress; DLR and DSR under alkaline stress were quantitative trait controlled by multiple genes. The genetic linkage map with 155 SSR markers which overlay the whole rice genome of 1541.5 cM and with the average distance of 9.95 cM between each two markers was constructed. Seven additive QTLs and three pairs of AA epistatic QTLs associated with DLR and DSR under salt or alkaline stress were identified, Of them, qDSRs8 - 1 with LOD of 6.54 and observed phenotypic variance of 15.96 % under salt stress, and qDLRa5 - 3 with LOD of 3.51 and observed phenotypic variance of 8.32 % under alkaline stress were new detected QTLs, which can be used in the breeding program in rice to get salt or alkaline tolerance rice cultivars in the future. The results also showed that excellent gene resource could be detected from any one rice germplasm; mechanisms for salt tolerance and alkaline tolerance in rice was different; additive QTLs were closely related with the resistance to salt injured in rice but epistatic effects of AA were closely related with the resistance to alkaline injured in rice.

  • 相关文献

[1]Identification of quantitative trait loci for the dead leaf rate and the seedling dead rate under alkaline stress in rice. Qi, Dongling,Cao, Guilan,Han, Longzhi,Qi, Dongling,Guo, Guizhen,Zhang, Junguo,Zhang, Sanyuan,Han, Longzhi,Lee, Myung-Chul,Suh, Seok-Cheol,Zhou, Qingyang. 2008

[2]Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). Wang, Huan,Shi, Decheng,Liu, Bao,Yang, Chunwu,Zhang, Meishan,Guo, Rui,Lin, Xiuyun. 2012

[3]A systematic proteomic analysis of NaCl-stressed germinating maize seeds. Meng, Ling-Bo,Meng, Ling-Bo,Chen, Yi-Bo,Wang, Yue-Feng,Wang, Bai-Chen,Lu, Tian-Cong,Lu, Tian-Cong,Qian, Chun-Rong,Yu, Yang,Ge, Xuan-Liang,Li, Xiao-Hui.

[4]Novel Type II Peroxiredoxin Gene Homologue from Chinese Wildrye Enhancing Salt Stress Tolerance of Transgenic Yeast. Yu Ying,Lu Yang,Dou Yao,Wang Hu-yi,Hao Dong-yun,Liu Xiang-guo,Han Si-ping,Hao Dong-yun,Feng Shu-dan. 2011

[5]Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa). Yan, Yong-Feng,Lestari, Puji,Lee, Kyu-Jong,Kim, Moon Young,Lee, Suk-Ha,Lee, Byun-Woo,Yan, Yong-Feng,Lee, Kyu-Jong,Kim, Moon Young,Lee, Suk-Ha,Lee, Byun-Woo,Yan, Yong-Feng,Lestari, Puji.

[6]Eastern Jilin Province Rice Cold Damage Risk Vulnerability Curve Established Based on CERES-Rice Model. Guo, Chunming,Zhu, Meng,Zhang, Jiquan,Cao, Tiehua. 2016

[7]Laser Irradiation-Induced DNA Methylation Changes Are Heritable and Accompanied with Transpositional Activation of mPing in Rice. Li, Siyuan,Xia, Qiong,Yu, Xiaoming,Gao, Xiang,Liu, Bao,Li, Siyuan,Wang, Fang,Ma, Jian,Kou, Hongping,Lin, Xiuyun. 2017

[8]A comparison about the paddy fields applicability of two water stress index model by infrared automatic monitoring the canopy temperature of rice. Gao, Shijie,Li, Xiaohui,Li, Jihong,Dong, Yingshan,Gao, Jiping,Zhang, Wenzhong. 2015

[9]Heritable alteration in DNA methylation pattern occurred specifically at mobile elements in rice plants following hydrostatic pressurization. Long, LK,Lin, XY,Zhai, JZ,Kou, HP,Yang, W,Liu, B. 2006

[10]In planta mobilization of mPing and its putative autonomous element Pong in rice by hydrostatic pressurization. Lin, Xiuyun,Long, Likun,Shan, Xiaohui,Zhang, Sanyuan,Shen, Sile,Liu, Bao. 2006

[11]Sugary Endosperm is Modulated by Starch Branching Enzyme IIa in Rice (Oryza sativa L.). Lee, Yunjoo,Lee, Gileung,Jang, Su,Kim, Backki,Woo, Mi-Ok,Koh, Hee-Jong,Lee, Yunjoo,Lee, Gileung,Jang, Su,Kim, Backki,Woo, Mi-Ok,Koh, Hee-Jong,Lee, Yunjoo,Lee, Gileung,Jang, Su,Kim, Backki,Woo, Mi-Ok,Koh, Hee-Jong,Choi, Min-Seon,Yoon, Mi-Ra,Piao, Rihua,Chin, Joong Hyoun. 2017

[12]Quantitative trait loci for cold tolerance of rice recombinant inbred lines in low temperature environments. Jiang, Wenzhu,Pan, Hong-Yu,Du, Xinglin,Jin, Yong-Mei,Lee, Joohyun,Lee, Kang-Ie,Piao, Rihua,Koh, Hee-Jong,Jin, Yong-Mei,Lee, Joohyun,Lee, Kang-Ie,Piao, Rihua,Koh, Hee-Jong,Han, Longzhi,Shin, Jin-Chul,Jin, Rong-De,Cao, Tiehua. 2011

[13]Fine Mapping of qTGW3-1, a QTL for 1 000-Grain Weight on Chromosome 3 in Rice. Zhang Qiang,Yao Guo-xin,Hu Guang-long,Chen Chao,Tang Bo,Zhang Hong-liang,Li Zi-chao,Zhang Qiang,Yao Guo-xin. 2012

[14]A new approach for obtaining rapid uniformity in rice (Oryza sativa L.) via a 3x x 2x cross. Xing, Shaochen,Cai, Yuhong,Zhou, Kaida. 2010

[15]Estimating nutrient uptake requirements for rice in China. Xu, Xinpeng,He, Ping,Zhao, Shicheng,Qiu, Shaojun,Zhou, Wei,Xie, Jiagui,Hou, Yunpeng,He, Ping,Pampolino, Mirasol F.,Johnston, Adrian M..

[16]Simultaneous improvement in cold tolerance and yield of temperate japonica rice (Oryza sativa L.) by introgression breeding. Meng, Lijun,Meng, Lijun,Chen, Kai,Cui, Yanru,Xu, Jianlong,Li, Zhikang,Lin, Xiuyun,Wang, Jinming.

[17]DNA Methylation Changes Induced in Rice by Exposure to High Concentrations of the Nitric Oxide Modulator, Sodium Nitroprusside. Ou, Xiufang,Zhuang, Tingting,Yin, Wenchao,Miao, Yiling,Wang, Bo,Zhang, Yunhong,Lin, Xiuyun,Xu, Chunming,Liu, Bao,Zhuang, Tingting,Lin, Xiuyun,von Wettstein, Diter,Rustgi, Sachin,von Wettstein, Diter,Rustgi, Sachin.

[18]Identification of rice blast resistance genes using international monogenic differentials. Wang, J. C.,Wen, J. W.,Liu, W. P.,Liu, X. M.,Li, L.,Jiang, Z. Y.,Zhang, J. H.,Guo, X. L.,Ren, J. P.,Jia, Y..

作者其他论文 更多>>