您好,欢迎访问江苏省农业科学院 机构知识库!

Molybdenum Affects Photosynthesis and Ionic Homeostasis of Chinese Cabbage under Salinity Stress

文献类型: 外文期刊

作者: Zhang, Mu 2 ; Hu, Chengxiao 1 ; Sun, Xuecheng 1 ; Zhao, Xiaohu 1 ; Tan, Qiling 1 ; Zhang, Ying 1 ; Li, Na 3 ;

作者机构: 1.Huazhong Agr Univ, Microelement Res Ctr, Wuhan 430070, Peoples R China

2.Guangdong Acad Agr Sci, Inst Agr Resources & Environm, Guangzhou, Guangdong, Peoples R China

3.Henan Acad Agr Sci, Res Ctr Agr Qual Stand & Testing Tech, Zhengzhou, Peoples R China

关键词: ionic homeostasis;salt stress;Chinese cabbage (Brassica campestris L. ssp. Pekinensis);photosynthesis;molybdenum

期刊名称:COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS ( 影响因子:1.327; 五年影响因子:1.315 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A pot trial was conducted to clarify the effects of molybdenum (Mo) on photosynthesis and ionic homeostasis of Chinese cabbage under salinity stress. Mo was applied at three levels (0, 0.15, 0.3 mg kg(-1)). Ten days after sowing, 500 ml of 0.8% of NaCl solution was added to half of the plants for each treatment every 10th day for three consecutive times. The results revealed that fresh weight was significantly increased by application of Mo under salt stress; contents of chlorophyll a, chlorophyll b, carotene, and total chlorophyll were all raised by application of Mo; photosynthesis rate was enhanced by nonstomatal factors by application of Mo; and the ratios of potassium/sodium ions (K+/Na+), calcium/sodium ions (Ca2+/Na+), and magnesium/sodium ions (Mg2+/Na+) were all increased by application of Mo under salt stress. The study suggests that the application of Mo enhances salinity stress tolerance in Chinese cabbage by increasing the photosynthesis rate and the ionic homeostasis adjustment.

  • 相关文献

[1]SUB-CELLULAR DISTRIBUTION OF NUTRIENT ELEMENTS AND PHOTOSYNTHESIS PERFORMANCE IN ORYZA SATIVA L. SEEDLINGS UNDER SALT STRESS. Ma, Jing,Lv, Chunfang,Hao, Peifei,Yuan, Ze,Wang, Yuwen,Shen, Weijun,Xu, Chao,Chen, Guoxiang,Gao, Zhiping,Lv, Chuangen. 2017

[2]Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.). Sun, Xiaochuan,Xu, Liang,Wang, Yan,Luo, Xiaobo,Kinuthia, Karanja Benard,Nie, Shanshan,Feng, Haiyang,Li, Chao,Liu, Liwang,Sun, Xiaochuan,Xu, Liang,Wang, Yan,Nie, Shanshan,Liu, Liwang,Zhu, Xianwen.

[3]Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress. Xu, Jianwen,Huang, Xi,Lan, Hongxia,Zhang, Hongsheng,Huang, Ji,Xu, Jianwen.

[4]Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Chen, G.,Fan, P. S.,Feng, W. M.,Guan, A. Q.,Lu, Y. Y.,Wan, Y. L..

[5]Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris). Zhu, Su-Qin,Chen, Ming-Wei,Liang, Jian-Sheng,Zhu, Su-Qin,Ji, Ben-Hua,Jiao, De-Mao.

[6]Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants. Ding, Xiaotao,Ding, Xiaotao,Deng, Qi,Yu, Chih-Li,Hu, Dafeng, I,Zhang, Dong,Jiang, Yuping,Zhou, Suping.

[7]Physiological and epigenetic analyses of Brassica napus seed germination in response to salt stress. Fang, Yujie,Li, Jian,Jiang, Jinjin,Geng, Yulu,Wang, Jinglei,Wang, Youping,Fang, Yujie.

[8]Comprehensive analysis of differentially expressed genes under salt stress in pear (Pyrus betulaefolia) using RNA-Seq. Li, Hui,Lin, Jing,Yang, Qing-Song,Li, Xiao-Gang,Chang, You-Hong.

[9]Physiological and antioxidant responses of Basella alba to NaCl or Na2SO4 stress. Ai, Shaoying,Yang, Shaohai,Chen, Yong,Sun, Lili,Wang, Ronghui,Li, Mengjun,Zeng, Zhaobing,Ning, Jianfeng,Ai, Shaoying,Yang, Shaohai,Chen, Yong,Sun, Lili,Wang, Ronghui,Li, Mengjun,Zeng, Zhaobing,Ning, Jianfeng,Ai, Shaoying,Yang, Shaohai,Chen, Yong,Sun, Lili,Wang, Ronghui,Li, Mengjun,Zeng, Zhaobing,Ning, Jianfeng,Cui, Lihua.

[10]Genome-wide characterization of the ankyrin repeats gene family under salt stress in soybean. Zhang, Dayong,Wan, Qun,He, Xiaolan,Ning, Lihua,Huang, Yihong,Xu, Zhaolong,Liu, Jia,Shao, Hongbo,Shao, Hongbo.

[11]Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke. Shao, Tianyun,Li, Lingling,Wu, Yawen,Chen, Manxia,Long, Xiaohua,Liu, Zhaopu,Shao, Hongbo,Shao, Hongbo,Rengel, Zed.

[12]Seed Germination Ecology of Catchweed Bedstraw (Galium aparine). Wang, Hongchun,Lou, Yuanlai,Zhang, Bing,Dong, Liyao.

[13]Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. Brestic, Marian,Shao, Hongbo,He, Xiaolan,Shao, Hongbo,Brestic, Marian,Zivcak, Marek,Olsovska, Katarina,Kovar, Marek,Sytar, Oksana.

[14]De novo transcriptome sequencing of Acer palmatum and comprehensive analysis of differentially expressed genes under salt stress in two contrasting genotypes. Rong, Liping,Li, Qianzhong,Li, Shushun,Tang, Ling,Wen, Jing.

[15]Comparative expression analysis of Calcineurin B-like family gene CBL10A between salt-tolerant and salt-sensitive cultivars in B-oleracea. Xu, Ling,Zhang, Dayong,Xu, Zhaolong,Huang, Yihong,He, Xiaolan,Wang, Jinyan,Shao, Hongbo,Li, Jianbin,Gu, Minfeng.

[16]Transcriptome sequencing and analysis of major genes involved in calcium signaling pathways in pear plants (Pyrus calleryana Decne.). Lin, Jing. 2015

[17]Characterization of CIPK Family in Asian Pear (Pyrus bretschneideri Behd) and Co-expressin Analysis Related to Salt and Osmotic Stress Responses. Tang, Jun,Lin, Jing,Chang, Youhong,Tang, Jun,Cheng, Zong-Ming. 2016

[18]Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). Sun, Xiaochuan,Xu, Liang,Wang, Yan,Yu, Rugang,Luo, Xiaobo,Gong, Yiqin,Wang, Ronghua,Limera, Cecilia,Liu, Liwang,Sun, Xiaochuan,Xu, Liang,Luo, Xiaobo,Zhu, Xianwen,Zhang, Keyun. 2015

[19]Conserved miRNAs and Their Response to Salt Stress in Wild Eggplant Solanum linnaeanum Roots. Zhuang, Yong,Zhou, Xiao-Hui,Liu, Jun. 2014

[20]Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress. Wang, Hongyan,Tang, Xiaoli,Shao, Hong-Bo,Wang, Hongyan,Wang, Honglei,Wang, Hongyan,Tang, Xiaoli,Shao, Hong-Bo. 2015

作者其他论文 更多>>