您好,欢迎访问中国热带农业科学院 机构知识库!

Anaerobic humus and Fe(III) reduction and electron transport pathway by a novel humus-reducing bacterium, Thauera humireducens SgZ-1

文献类型: 外文期刊

作者: Ma, Chen 1 ; Yu, Zhen 1 ; Lu, Qin 1 ; Zhuang, Li 1 ; Zhou, Shun-Gui 1 ;

作者机构: 1.Guangdong Inst Ecoenvironm & Soil Sci, Guangzhou 510650, Guangdong, Peoples R China

2.Chinese Acad Trop Agr Sci, Hainan Prov Key Lab Qual & Safety Trop Fruits & V, Anal & Testing Ctr, Haikou 571101, Peoples R China

关键词: Thauera;Humus;Fe(III) species;Electron transport pathway;c-type cytochrome

期刊名称:APPLIED MICROBIOLOGY AND BIOTECHNOLOGY ( 影响因子:4.813; 五年影响因子:4.697 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: In this study, an anaerobic batch experiment was conducted to investigate the humus- and Fe(III)-reducing ability of a novel humus-reducing bacterium, Thauera humireducens SgZ-1. Inhibition tests were also performed to explore the electron transport pathways with various electron acceptors. The results indicate that in anaerobic conditions, strain SgZ-1 possesses the ability to reduce a humus analog, humic acids, soluble Fe(III), and Fe(III) oxides. Acetate, propionate, lactate, and pyruvate were suitable electron donors for humus and Fe(III) reduction by strain SgZ-1, while fermentable sugars (glucose and sucrose) were not. UV-visible spectra obtained from intact cells of strain SgZ-1 showed absorption peaks at 420, 522, and 553 nm, characteristic of c-type cytochromes (cyt c). Dithionite-reduced cyt c was reoxidized by Fe-EDTA and HFO (hydrous ferric oxide), which suggests that cyt c within intact cells of strain SgZ-1 has the ability to donate electrons to extracellular Fe(III) species. Inhibition tests revealed that dehydrogenases, quinones, and cytochromes b/c (cyt b/c) were involved in reduction of AQS (9, 10-anthraquinone-2-sulfonic acid, humus analog) and oxygen. In contrast, only NADH dehydrogenase was linked to electron transport to HFO, while dehydrogenases and cyt b/c were found to participate in the reduction of Fe-EDTA. Thus, various different electron transport pathways are employed by strain SgZ-1 for different electron acceptors. The results from this study help in understanding the electron transport processes and environmental responses of the genus Thauera.

  • 相关文献
作者其他论文 更多>>