您好,欢迎访问江苏省农业科学院 机构知识库!

Cloning and expression analysis of CaPIP1-1 gene in pepper (Capsicum annuum L.)

文献类型: 外文期刊

作者: Yin, Yan-Xu 1 ; Wang, Shu-Bin 2 ; Zhang, Huai-Xia 1 ; Xiao, Huai-Juan 1 ; Jin, Jing-Hao 1 ; Ji, Jiao-Jiao 1 ; Jing, Hu 1 ;

作者机构: 1.Northwest A&F Univ, Coll Hort, Yangling 712100, Shaanxi, Peoples R China

2.Jiangsu Acad Agr Sci, Inst Vegetable Crops, Nanjing 210014, Jiangsu, Peoples R China

3.Zagazig Univ, Fac Agr, Dept Hort, Zagazig 44511, Egypt

关键词: Capsicum annuum L.;CaPIP1-1;Gene expression;Abiotic stresses;Biotic stress

期刊名称:GENE ( 影响因子:3.688; 五年影响因子:3.329 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Plant aquaporins are responsible for water transmembrane transport, which play an important role on abiotic and biotic stresses. A novel plasma membrane intrinsic protein of CaPIP1-1 was isolated from the pepper P70 according to transcriptome databases of Phytophthora capsici inoculation and chilling stress library. CaPIP1-1, which is 1155 bp in length with an open reading frame of 861 bp, encoded 286 amino acids. Three introns, exhibited CT/AC splice junctions, were observed in CaPIP1-1. The numbers and location of introns in CaPIP1-1 were the same as observed in tomato and potato. CaPIP1-1 was abundantly expressed in pepper fruit. Increased transcription levels of CaPIP1-1 were found in the different stresses, including chilling stress, salt stress, mannitol stress, salicylic acid, ABA treatment and Phytophthora capsici infection. The expression of CaPIP1-1 was downregulated by 50 mu M HgCl and 100 mu M fluridone. The pepper plants silenced CaPIP1-1 in cv. Qiemen showed growth inhibition and decreased tolerance to salt and mannitol stresses using detached leaf method. (C) 2015 Elsevier B.V. All rights reserved.

  • 相关文献

[1]Cloning and characterization of the CarbcL gene related to chlorophyll in pepper (Capsicum annuum L.) under fruit shade stress. Wang, Shu-Bin,Pan, Bao-Gui,Diao, Wei-Ping,Tian, Shi-Lin,Shah, Syed N. M.,Gong, Zhen-Hui,Tian, Shi-Lin,Shah, Syed N. M.. 2015

[2]Characterization and expression profile of CaNAC2 pepper gene. Guo, Wei-Li,Chen, Ru-Gang,Yin, Yan-Xu,Gong, Zhen-Hui,Guo, Wei-Li,Chen, Bi-Hua,Du, Xiao-Hua,Zhang, Yu-Yuan,Wang, Shu-Bin. 2015

[3]Overexpression of the CaTIP1-1 Pepper Gene in Tobacco Enhances Resistance to Osmotic Stresses. Yin, Yan-Xu,Xiao, Huai-Juan,Zhang, Huai-Xia,Zhang, Zhen,Jing, Hua,Zhang, Ying-Li,Chen, Ru-Gang,Gong, Zhen-Hui,Wang, Shu-Bin,Zhang, Ying-Li. 2014

[4]Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. Guo, Meng,Liu, Jin-Hong,Lu, Jin-Ping,Zhai, Yu-Fei,Wang, Hu,Gong, Zhen-Hui,Lu, Ming-Hui,Wang, Shu-Bin. 2015

[5]Molecular cloning and characterization of two novel DREB genes encoding dehydration-responsive element binding proteins in halophyte Suaeda salsa. Sun, Xiao-Bo,Ma, Hong-Xiang,Jia, Xin-Ping,Ye, Xiao-Qing,Chen, Yu.

[6]Systematic discovery and characterization of stress-related microRNA genes in Oryza sativa. Xie, Kai Bin,Zhou, Xue,Zhang, Tian Hai,Chen, Guo Xiang,Zhou, Xue,Zhang, Bao Long,Chen, Li Ming.

[7]Selection of appropriate reference genes in eggplant for quantitative gene expression studies under different experimental conditions. Zhou, Xiaohui,Liu, Jun,Zhuang, Yong.

[8]Comprehensive molecular evolution and gene expression analyses of the ABC1 atypical kinase family in rice and Arabidopsis. Gao, Qingsong,Luo, Yuming,Yang, Liming,Zang, Hui,Gao, Yun,Yang, Zefeng,Zhou, Yong,Yuan, Yuan,Wang, Yifan,Xu, Xing,Xu, Chenwu,Liang, Guohua,Wang, Jun.

[9]Identification and characterization of presence/absence variation in maize genotype Mo17. Jiang, Lu,Lv, Yuanda,Li, Tan,Zhao, Han,Zhang, Tifu,Jiang, Lu.

[10]Whole-genome expression analysis of Rice black-streaked dwarf virus in different plant hosts and small brown planthopper. Xu, Qiufang,Ni, Haiping,Zhang, Jinfeng,Lan, Ying,Ren, Chunmei,Zhou, Yijun,Xu, Qiufang,Lan, Ying,Ren, Chunmei,Zhou, Yijun,Ni, Haiping.

[11]Functional conservation analysis and expression modes of grape anthocyanin synthesis genes responsive to low temperature stress. Zhang, Cheng,Jia, Haifeng,Fang, Jinggui,Wang, Chen,Wu, Weimin,Wang, Xicheng.

[12]RNA-Seq Analysis of Differentially Expressed Genes in Rice under Photooxidation. Ma, J.,Zhang, B. -B.,Wang, F.,Sun, M. -M.,Shen, W. -J.,Gao, Z.,Chen, G. -X.,Lv, C..

[13]Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Yang, Bo,Wang, Xiao-Mi,Ma, Hai-Yan,Jia, Yong,Dai, Chuan-Chao,Li, Xia.

[14]CLONING AND EXPRESSION ANALYSIS OF TWO UDP-GLUCOSYLTRANSFERASES GENES IN WHEAT. Lin, F. Y.,Shi, J. R.,Lu, Q. X.,Xu, J. H.,Yang, H. Y..

[15]Creating leptin-like biofunctions by active immunization against chicken leptin receptor in growing chickens. Lei, M. M.,Chen, Z.,Ying, S. J.,Shi, Z. D.,Wu, S. Q.,Li, X. W.,Shao, X. B..

[16]Transcriptomic responses to different doses of cycloxaprid involved in detoxification and stress response in the whitebacked planthopper, Sogatella furcifera. Yang, Yuanxue,Zhang, Yixi,Yang, Baojun,Liu, Zewen,Fang, Jichao.

[17]5-Aminolevulinic acid promotes anthocyanin accumulation in Fuji apples. Xie, L.,Cheng, X. H.,Gao, J. J.,Zhang, Z. P.,Wang, L. J.,Wang, Z. H..

[18]Cloning and expression of genes related to the sucrose-metabolizing enzymes and carbohydrate changes in peach. Zhang, Chunhua,Shen, Zhijun,Ma, Ruijuan,Yu, Mingliang,Zhang, Yanping,Han, Jian,Korir, Nicholas Kibet.

[19]Isolation, cloning, and expression of five genes related to nitrogen metabolism in peach (Prunus persica L. Batsch). Zhang, C. H.,Zhang, B. B.,Yu, M. L.,Ma, R. J.,Song, Z. Z.,Korir, N. K..

[20]De novo sequencing and comprehensive analysis of the mutant transcriptome from purple sweet potato (Ipomoea batatas L.). Ma, Peiyong,Bian, Xiaofeng,Jia, Zhaodong,Guo, Xiaoding,Xie, Yizhi.

作者其他论文 更多>>