Hyperspectral imaging combined with multivariate analysis and band math for detection of common defects on peaches (Prunus persica)
文献类型: 外文期刊
作者: Zhang, Baohua 1 ; Li, Jiangbo 1 ; Fan, Shuxiang 1 ; Huang, Wenqian 1 ; Zhao, Chunjiang 1 ; Liu, Chengliang 2 ; Huang, 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Intelligent Equipment Agr, Beijing 100097, Peoples R China
2.Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
关键词: Hyperspectral imaging;Multivariate analysis;Band math;Common defects;Peaches
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:5.565; 五年影响因子:5.494 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Automatic detection of common defects on peaches by using imaging system is still a challenge due to the high variability of peach surface color, the similarity between the defects and stem, as well as the uneven distribution of lightness on peaches. In order to detect the common defects on peaches using hyperspectral imaging, defects were divided into two different types: artificial defects and non-artificial defects. For artificial defect detection, a two-step multivariate analysis method (Monte Carlo-Uninformative Variable Elimination and successful projections algorithm) was conducted in the spectral domain for the discriminant wavelength (DW) selection, and then minimum noise fraction (MNF) transform was conducted on the images at DWs for image processing and artificial defect detection. For the candidate non-artificial defect detection; a pair of two characteristic wavelengths at 925 nm and 726 nm was selected by analyzing the full spectra of sound and non-artificial defective regions, and then a band math equation was constructed for differentiating the non-artificial defect regions and stems from the sound and physical damage regions, and the candidate non-artificial defects (including non-artificial defects and stems) could be segmented by using a simple threshold method. In order to distinguish the stem from the segmented candidate non-artificial defect regions, another band math equation was constructed based on another pair of two characteristic wavelengths at 650 nm and 675 nm for stem identification. Additionally, the uneven lightness distribution in the spectral images was also investigated and eliminated by the band math methods. The overall classification accuracy of 93.3% for the 120 samples indicated that the selected DWs and proposed method were suitable and efficient for the common defect detection. The limitation of our research is the static inspection in one single view. (C) 2015 Elsevier B.V. All rights reserved.
- 相关文献
作者其他论文 更多>>
-
Staggered-Phase Spray Control: A Method for Eliminating the Inhomogeneity of Deposition in Low-Frequency Pulse-Width Modulation (PWM) Variable Spray
作者:Zhang, Chunfeng;Zhao, Chunjiang;Zhang, Chunfeng;Zhai, Changyuan;Zhang, Meng;Zhang, Chi;Zou, Wei;Zhao, Chunjiang;Zhang, Chunfeng;Zou, Wei;Zhai, Changyuan;Zhang, Meng;Zhao, Chunjiang
关键词:precision spray; variable spray; PWM; deposition; duty cycle; frequency
-
Determination of soluble solids content of multiple varieties of tomatoes by full transmission visible-near infrared spectroscopy
作者:Li, Sheng;Yang, Xuhai;Zhang, Qian;Li, Sheng;Li, Jiangbo;Wang, Qingyan;Shi, Ruiyao;Li, Sheng;Yang, Xuhai;Zhang, Qian;Li, Sheng;Yang, Xuhai;Zhang, Qian;Li, Sheng;Yang, Xuhai;Zhang, Qian
关键词:tomato; soluble solids content; online detection; full transmission; quantitative analysis model
-
A novel electrochemical sensor for in situ and in vivo detection of sugars based on boronic acid-diol recognition
作者:Liu, Ke;Xu, Tongyu;Zhao, Chunjiang;Liu, Ke;Li, Aixue;Zhao, Chunjiang
关键词:Fructose; Glucose; Electrochemical biosensor; In situ; In vivo; Artificial neural network
-
Eliminating Primacy Bias in Online Reinforcement Learning by Self-Distillation
作者:Li, Jingchen;Wu, Huarui;Zhao, Chunjiang;Shi, Haobin;Hwang, Kao-Shing
关键词:Online reinforcement learning; overfitting; reinforcement learning
-
Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat
作者:Li, Wenrui;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu
关键词:3D reconstruction; plant morphology; point cloud segmentation; Wheat
-
Dynamic Compressive Stress Relaxation Model of Tomato Fruit Based on Long Short-Term Memory Model
作者:Ru, Mengfei;Zhao, Chunjiang;Feng, Qingchun;Sun, Na;Li, Yajun;Sun, Jiahui;Li, Jianxun;Ru, Mengfei;Feng, Qingchun;Zhao, Chunjiang
关键词:tomato; stress relaxation; machine learning; LSTM
-
Energy and environmental evaluation and comparison of a diesel-electric hybrid tractor, a conventional tractor, and a hillside mini-tiller using the life cycle assessment method
作者:Liu, Wei;Yang, Rui;Li, Li;Zhao, Chunjiang;Li, Guanglin;Zhao, Chunjiang
关键词:Agricultural machinery; Electrification; Hybrid electric tractor; Environmental impact