您好,欢迎访问江苏省农业科学院 机构知识库!

Overexpression of maize phosphoenolpyruvate carboxylase improves drought tolerance in rice by stabilization the function and structure of thylakoid membrane

文献类型: 外文期刊

作者: Shen, W. J. 1 ; Chen, G. X. 1 ; Xu, J. G. 1 ; Jiang, Y. 1 ; Liu, L. 1 ; Gao, Z. P. 1 ; Ma, J. 2 ; Chen, X.; Chen, T. H.;

作者机构: 1.Nanjing Normal Univ, Coll Life Sci, Nanjing 210023, Jiangsu, Peoples R China; Jiangsu Acad Agr Sci, Inst Food & Crops, Nanjing 210014, Jiangsu, Peoples R China

2.Nanjing Normal Univ, Coll Life Sci, Nanjing 210023, Jiangs

关键词: drought stress;phosphoenolpyruvate carboxylase;transgenic rice;oxidative stress

期刊名称:PHOTOSYNTHETICA ( 影响因子:3.189; 五年影响因子:3.38 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Drought impacts severely crop photosynthesis and productivity. Development of transgenic rice overexpressing maize phosphoenolpyruvate carboxylase (PEPC) is a promising strategy for improving crop production under drought stress. However, the molecular mechanisms of protection from PEPC are not yet clear. The objective of this study was: first, to characterize the response of individual photosynthetic components to drought stress; second, to study the physiological and molecular mechanisms underlying the drought tolerance of transgenic rice (cv. Kitaake) over-expressing maize PEPC. Our results showed that PEPC overexpressing improved the ability of transgenic rice to conserve water and pigments during drying as compared to wild type. Despite the fact that drought induced reactive oxygen species and damaged photosystems (especially, PSI) in both lines, higher intercellular CO2 concentration protected the photosynthetic complexes, peptides, and also ultrastructure of thylakoid membranes against the oxidative damage in transgenic rice. In conclusion, although photosynthetic apparatus suffered an inevitable and asymmetric impairment during drought conditions, PEPC effectively alleviated the oxidative damage on photosystems and enhanced the drought tolerance by increasing intercellular CO2 concentration. Our investigation provided critical clues for exploring the feasibility of using C-4 photosynthesis to increase the yield of rice under the aggravated global warming.

  • 相关文献

[1]Physiological investigation of C-4-phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance. Zhang, Chen,Li, Xia,He, Yafei,Zhang, Jinfei,Yan, Ting,Liu, Xiaolong,Zhang, Chen,Li, Xia,Yan, Ting.

[2]Characteristics of carbon assimilation and chlorophyll fluorescence in C_4 photosynthetic enzymes transgenic rice. D-M Jiao,X-Q Huang,X Li,W Chi,T-Y Kuang,Q-D Zhang,MSB Ku. 2001

[3]Characteristics of carbon assimilation and tolerance to photo-oxidation in transgenic rice expressing C_4 photosynthesis enzymes. D-M Jiao,X-Q Huang,X Li,W Chi,T-Y Kuang,Q-D Zhang,MSB Ku. 2001

[4]Improved oxidative tolerance in suspension-cultured cells of C-4-pepctransgenic rice by H2O2 and Ca2+ under PEG-6000. Qian, Baoyun,Li, Xia,Liu, Xiaolong,Wang, Man,Qian, Baoyun,Liu, Xiaolong,Qian, Baoyun,Li, Xia,Liu, Xiaolong,Wang, Man. 2015

[5]Improved short-term drought response of transgenic rice over-expressing maize C-4 phosphoenolpyruvate carboxylase via calcium signal cascade. Liu, Xiaolong,Li, Xia,Yan, Ting,Zhang, Jinfei,Liu, Xiaolong,Li, Xia,Yan, Ting,Dai, Chuanchao,Zhou, Jiayu.

[6]Exogenous ATP enhance signal response of suspension cells of transgenic rice (Oryza sativa L.) expressing maize C-4 -pepc encoded phosphoenolpyruvate carboxylase under PEG treatment. Huo, K.,Li, X.,He, Y. F.,Wei, X. D.,Zhao, C. F.,Wang, C. L.,Huo, K.,Lu, W..

[7]Enhanced drought tolerance in transgenic rice over-expressing of maize C-4 phosphoenolpyruvate carboxylase gene via NO and Ca2+. Qian, Baoyun,Li, Xia,Liu, Xiaolong,Chen, Pingbo,Ren, Chengang,Qian, Baoyun,Liu, Xiaolong,Dai, Chuanchao.

[8]Characteristics of CO2 exchange and chlorophyll fluorescence of transgenic rice with C-4 genes. Huang, XQ,Jiao, DM,Chi, W,Ku, MSB. 2002

[9]The characteristics of CO2 assimilation of photosynthesis and chlorophyll fluorescence in transgenic PEPC rice. Jiao, DM,Li, X,Huang, XQ,Wei, C,Kuang, TY,Maurice, KSB. 2001

[10]CO2 exchange and chlorophyll fluorescence of phosphoenolpyruvate carboxylase transgenic rice pollen lines. Ling, Li-Li,Lin, Hong-Hui,Ji, Ben-Hua,Jiao, De-Mao. 2006

[11]RNAi-mediated transgenic rice resistance to Rice stripe virus. Wang Biao,Lei Yang,Dai Yu-hua,He Wen,Liang Chun,Wang Xi-feng,Guo Cheng,Liang Chun,Zhou Tong,Liang Chun. 2016

[12]A limited photosynthetic C-4-microcycle and its physiological function in transgenic rice plant expressing the maize PEPC gene. Ji, BH,Zhu, SQ,Jiao, DM. 2004

[13]Response of Gas Exchange and Water Use Efficiency to Light Intensity and Temperature in Transgenic Rice Expressing PEPC and PPDK Genes. Jiao De-mao,Zhang Bian-jiang,Chen Quan-zhan,Hua Chun,Zhou Feng,Zhou Quan-chen. 2009

[14]Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C(4) photosynthesis enzymes. Jiao, DM,Huang, XQ,Li, X,Chi, W,Kuang, TY,Zhang, QD,Ku, MSB,Cho, DH. 2002

[15]Physiological and metabolic enzymes activity changes in transgenic rice plants with increased phosphoenolpyruvate carboxylase activity during the flowering stage. Xia, Li,Cao, Wang,Xia, Li.

[16]Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. Zhou, Rong,Zhao, Liping,Wang, Yinlei,Yu, Wengui,Zhao, Tongmin,Zhou, Rong,Zhao, Liping,Wang, Yinlei,Yu, Wengui,Zhao, Tongmin,Zhou, Rong,Yu, Xiaqing,Wu, Zhen,Ottosen, Carl-Otto,Rosenqvist, Eva. 2017

[17]Gender-related differences in adaptability to drought stress in the dioecious tree Ginkgo biloba. He, Mei,Shi, Dawei,Wang, Tao,Xie, Yinfeng,He, Mei,Shi, Dawei,Wang, Tao,Xie, Yinfeng,He, Mei,Hu, Yuan,Wei, Xiaodong.

[18]A Cotton MYB Transcription Factor, GbMYB5, is Positively Involved in Plant Adaptive Response to Drought Stress. Chen, Tianzi,Li, Wenjuan,Liu, Aimin,Zhang, Baolong,Li, Wenjuan,Hu, Xuehong,Guo, Jiaru,Liu, Aimin.

[19]Protective Effects of Blueberry Anthocyanins against H2O2-Induced Oxidative Injuries in Human Retinal Pigment Epithelial Cells. Huang, Wu-Yang,Wu, Han,Li, Da-Jing,Song, Jiang-Feng,Xiao, Ya-Dong,Liu, Chun-Quan,Zhou, Jian-Zhong,Huang, Wu-Yang,Sui, Zhong-Quan. 2018

[20]Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Rastogi, Anshu,Rastogi, Anshu,Zivcak, Marek,Sytar, Oksana,Brestic, Marian,Sytar, Oksana,Kalaji, Hazem M.,Kalaji, Hazem M.,He, Xiaolan,Mbarki, Sonia. 2017

作者其他论文 更多>>