您好,欢迎访问江苏省农业科学院 机构知识库!

Genome-wide histone acetylation correlates with active transcription in maize

文献类型: 外文期刊

作者: Zhang, Wei 1 ; Garcia, Nelson 1 ; Feng, Yaping 1 ; Zhao, Han 2 ; Messing, Joachim 1 ;

作者机构: 1.Rutgers State Univ, Waksman Inst Microbiol, Piscataway, NJ 08854 USA

2.Jiangsu Acad Agr Sci, Inst Biotechnol, Prov Key Lab Agrobiol, Nanjing 210014, Peoples R China

关键词: Histone modification;H3K27ac;Maize;Next-generation sequencing

期刊名称:GENOMICS ( 影响因子:5.736; 五年影响因子:4.939 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Gene expression is regulated at many different levels during the life cycle of all plant species. Recent investigations have taken advantage of next-generation sequencing to study the relevance of DNA methylation and sRNAs in controlling tissue-specific gene expression in maize at the genome-wide level. Here, we profiled H3K27ac in maize, which has one of the largest sequenced plant genomes due to the amplification of retrotransposons. Because transcribed genes represent only a small proportion of its genome, gene-specific epigenetic modifications are concentrated in a relatively small percentage of the genome. Indeed, H3K27ac marks are mostly in gene-rich, in contrast to gene-poor regions. A large proportion of those marks are located in transcribed regions of genes, including 111 out of 458 known genetic loci. Moreover, increased transcription correlates with the presence of H3K27ac modification in gene bodies. Using maize as an example, we suggest that H3K27ac marks actively transcribed genes in plants. (C) 2015 Elsevier Inc. All rights reserved.

  • 相关文献

[1]玉米功台皂性Insertjon/Deletion(InDel)分子标记的挖掘及其在杂交种纯度鉴定中的应用. 张体付,葛敏,韦玉才,赵涵. 2012

[2]High-throughput development of simple sequence repeat markers for genetic diversity research in Crambe abyssinica. Qi, Weicong,Lin, Feng,Zhao, Han,Liu, Yuhe,Huang, Bangquan,Cheng, Jihua,Zhang, Wei. 2016

[3]Silver nanoparticles deteriorate the mutual interaction between maize (Zea mays L.) and arbuscular mycorrhizal fungi: a soil microcosm study. Cao, Jiling,Feng, Youzhi,Lin, Xiangui,Cao, Jiling,Feng, Youzhi,Lin, Xiangui,Cao, Jiling,Feng, Youzhi,Lin, Xiangui,Cao, Jiling,He, Shiying. 2017

[4]Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Ge, Min,Jiang, Lu,Wang, Yuancong,Lv, Yuanda,Zhou, Ling,Liang, Shuaiqiang,Bao, Huabin,Zhao, Han,Liu, Yuhe. 2018

[5]The Difference of Physiological and Proteomic Changes in Maize Leaves Adaptation to Drought, Heat, and Combined Both Stresses. Zhao, Feiyun,Zhao, Yulong,Wang, Wei,Yang, Hao,Tai, Fuju,Li, Chaohai,Hu, Xiuli,Zhang, Dayong. 2016

[6]Effect of fermentation on the nutritive value of maize. Cui, Li,Li, Da-jing,Liu, Chun-quan,Cui, Li,Li, Da-jing,Liu, Chun-quan. 2012

[7]Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress. Hu, Xiuli,Wu, Liuji,Zhao, Feiyun,Li, Nana,Li, Chaohao,Wang, Wei,Zhang, Dayong,Zhu, Guohui. 2015

[8]Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China. Chen FanJun,Yuan LiXing,Mi GuoHua,Zhang FuSuo,Fang ZenGuo,Gao Qiang,Ye YouLiang,Jia LiangLiang. 2013

[9]Optimised sowing date enhances crop resilience towards size-asymmetric competition and reduces the yield difference between intercropped and sole maize. Li, Haipeng,Li, Xiaolin,Zhang, Chaochun,Zhang, Fusuo,Liu, Quanqing. 2018

[10]Dual transcriptome analysis reveals insights into the response to Rice black-streaked dwarf virus in maize. Zhou, Yu,Duan, Canxing,Hao, Zhuanfang,Li, Mingshun,Yong, Hongjun,Zhang, Degui,Zhang, Shihuang,Weng, Jianfeng,Li, Xinhai,Zhou, Yu,Xu, Zhennan,Wang, Zhenhua,Chen, Yanping,Meng, Qingchang,Wu, Jirong.

[11]Genome-wide identification of housekeeping genes in maize. Lin, Feng,Jiang, Lu,Lv, Yuanda,Zhao, Han,Liu, Yuhe,Dai, Huixue. 2014

[12]Genome-Wide Discovery of Tissue-Specific Genes in Maize. Lin, Feng,Bao, Huabin,Zhao, Han,Bao, Huabin,Yang, Jun,Liu, Yuhe,Dai, Huixue.

[13]Mechanisms for the relationships between water-use efficiency and carbon isotope composition and specific leaf area of maize (Zea mays L.) under water stress. Zhang, Congzhi,Zhang, Jiabao,Zhang, Hui,Zhao, Jinhua,Wu, Qicong,Zhao, Zhanhui,Cai, Taiyi,Zhang, Hui.

作者其他论文 更多>>