您好,欢迎访问江苏省农业科学院 机构知识库!

Functional conservation analysis and expression modes of grape anthocyanin synthesis genes responsive to low temperature stress

文献类型: 外文期刊

作者: Zhang, Cheng 1 ; Jia, Haifeng 1 ; Wu, Weimin 2 ; Wang, Xicheng 2 ; Fang, Jinggui 1 ; Wang, Chen 1 ;

作者机构: 1.Nanjing Agr Univ, Coll Hort, Nanjing 210095, Jiangsu, Peoples R China

2.Jiangsu Acad Agr Sci, Inst Hort, Nanjing 210014, Jiangsu, Peoples R China

关键词: Anthocyanin;Vitis vinifera L. cv. Yongyou 1 Juxing;Low temperature;Conservation analysis;Gene expression

期刊名称:GENE ( 影响因子:3.688; 五年影响因子:3.329 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: In grape cultivation, low temperature generally increases the expression of genes involved in synthesis of anthocyanin. In this study, multi-type structural analysis of the proteins encoded by five anthocyanin biosynthesis genes VvF3H, VvPAL, VvCHS3, VvCHS2 and VvLDOX, in addition to nine of their homologous genes revealed that proteins in grapevine shared a high similarity with that in kiwi, red orange and some other species in which the biosynthesis of anthocyanin significantly influenced by low temperature as proved by previous studies. Low temperature regulatory elements were also found in the promoter region of the grapevine genes VvCHS2, VvPAL and VvF3H. These findings indicate that the functions of anthocyanin biosynthesis genes in grapevine are conservative and might be sensitive to low temperature. In order to identify the specific expression patterns of the five anthocyanin biosynthesis genes and the changes of polyphenols, anthocyanins and flavonoids under low temperature stress. The transcription analysis of the five genes and the content of polyphenols, anthocyanins and flavonoids in grape skins were examined, by using Vitis vinifera L. cv. 'Yongyou 1' and juxing' berries as experimental material and treated at 4 degrees C and 25 degrees C for 24 h, 48 h, 72 h and 96 h. The results showed that low temperature greatly enhanced the expression of the five anthocyanin biosynthesis genes. Low temperature greatly slowed down the decomposition of polyphenol, anthocyanin, and flavonoid in grape skins. Our study also found that cv. juxing' responded more sensitively to low temperature than cv. 'Yongyou 1'. All the findings would provide a basis for further study on the mechanism of anthocyanin biosynthesis under environmental stress. (C) 2015 Elsevier B.V. All rights reserved.

  • 相关文献

[1]Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening. Huan, Chen,Jiang, Li,An, Xiujuan,Xu, Yin,Yu, Zhifang,Yu, Mingliang,Ma, Ruijuan.

[2]Cloning and expression of UDP-glucose: flavonoid 3-O-glucosyltransferase gene in peach flowers. Wen, X. C.,Han, J.,Leng, X. P.,Jiang, W. B.,Fang, J. G.,Ma, R. J.. 2014

[3]De novo sequencing and comprehensive analysis of the mutant transcriptome from purple sweet potato (Ipomoea batatas L.). Ma, Peiyong,Bian, Xiaofeng,Jia, Zhaodong,Guo, Xiaoding,Xie, Yizhi.

[4]Metabolic changes of peanut (Arachis hypogaea L.) buds in response to low temperature (LT). Wang, X. J.,Sun, D. L.,Bian, N. F.,Zhang, Z. M.,Wang, X.,Xu, Z. J.,Qi, Y. J.,Shen, Y..

[5]Characteristics of isolated lactic acid bacteria and their effects on the silage quality. Wang, Siran,Yuan, Xianjun,Dong, Zhihao,Li, Junfeng,Zhang, Junyu,Shao, Tao,Guo, Gang,Bai, Yunfeng.

[6]Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development. Zhou, Zhiguo,Xu, Naiyin.

[7]Low temperature treatments of rice (Oryza sativa L.) anthers changes polysaccharide and protein composition of the anther walls and increases pollen fertility and callus induction. Tian, Q. Q.,Li, X.,Fang, X. W.,Tian, Q. Q.,Lu, C. M.,Li, X..

[8]Enzymatic Acylation of Anthocyanin Isolated from Black Rice with Methyl Aromatic Acid Ester as Donor: Stability of the Acylated Derivatives. Yan, Zheng,Zeng, Xiaoxiong,Yan, Zheng,Li, Chunyang,Zheng, Lixia,Liu, Qin,Ou, Shiyi.

[9]Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development. Jiao, Yun,Ma, Rui-juan,Shen, Zhi-jun,Yan, Juan,Yu, Ming-liang. 2014

[10]Response of the enzymes to nitrogen applications in cotton fiber (Gossypium hirsutum L.) and their relationships with fiber strength. Wang YouHua,Feng Ying,Xu NaiYin,Chen BingLin,Ma RongHui,Zhou ZhiGuo,Xu NaiYin. 2009

[11]Assessment of reference gene stability in Rice stripe virus and Rice black streaked dwarf virus infection rice by quantitative Real-time PCR. Fang, Peng,Sun, Feng,Lan, Ying,Du, Linlin,Zhou, Yijun,Zhou, Tong,Fang, Peng,Sun, Feng,Lan, Ying,Du, Linlin,Zhou, Yijun,Zhou, Tong,Fang, Peng,Lu, Rongfei,Shen, Wenbiao. 2015

[12]Isolation and expression analysis of four HD-ZIP III family genes targeted by microRNA166 in peach. Zhang, C. H.,Zhang, B. B.,Ma, R. J.,Yu, M. L.,Guo, S. L.,Guo, L.. 2015

[13]Pigment comparison and expression of chlorophyll metabolism genes in yellow and green Acer palmatum Thunb. ex Murray leaves. Li, S-S.,Li, Q-Z.,Tang, L.,Wen, J.. 2017

[14]The Soybean Basic Helix-Loop-Helix Transcription Factor ORG3-Like Enhances Cadmium Tolerance via Increased Iron and Reduced Cadmium Uptake and Transport from Roots to Shoots. Xu, Zhaolong,Liu, Xiaoqing,He, Xiaolan,Xu, Ling,Huang, Yihong,Shao, Hongbo,Zhang, Dayong,Shao, Hongbo,Tang, Boping,Ma, Hongxiang. 2017

[15]Compound Chinese herbal medicinal ingredients can enhance immune response and efficacy of RHD vaccine in rabbit. Yang, Longsheng,Hu, Yuanliang,Wang, Deyun,Kong, Xiangfeng,Yang, Longsheng,Xue, Jiabin,Wang, Fang,Xu, Weizhong,Li, Peng,Kong, Xiangfeng,Kong, Xiangfeng. 2008

[16]Proteomic analysis of responsive root proteins of Fusarium oxysporum-infected watermelon seedlings. Zhang, Man,Xu, Jinhua,Liu, Guang,Yao, Xiefeng,Ren, Runsheng,Yang, Xingping. 2018

[17]Leptin receptor signaling inhibits ovarian follicle development and egg laying in chicken hens. Lei, Ming M.,Chen, Zhe,Shi, Zhen D.,Wu, Si Q.,Li, Xiao W.,Wang, Cong L.. 2014

[18]Chromatin states responsible for the regulation of differentially expressed genes under Co-60 similar to gamma ray radiation in rice. Pan, Xiucai,Fang, Yuan,Zheng, Dongyang,Chen, Lifen,Wang, Lei,Xiao, Jin,Wang, Xiu-e,Zhang, Wenli,Yang, Xueming,Wang, Kai,Cheng, Zhukuan,Cheng, Zhukuan,Yu, Hengxiu,Zhang, Wenli. 2017

[19]Systemic analysis of gene expression profiles in porcine granulosa cells during aging. Li Hui,Guo Shuangshuang,Yu Jianning,Shi Zhendan. 2017

[20]Proanthocyanidin monomers and cyanidin 3-o-glucoside accumulation in blood-flesh peach (Prunus persica (l.) Batsch) fruit. Yan, Juan,Cai, Zhi-xiang,Shen, Zhi-jun,Ma, Rui-juan,Yu, Ming-liang. 2017

作者其他论文 更多>>