Responses of soil micro-food web to long-term fertilization in a wheat-maize rotation system
文献类型: 外文期刊
作者: Zhang, Zhiyong 1 ; Zhang, Xiaoke 1 ; Xu, Minggang 3 ; Zhang, Shuiqing 4 ; Huang, Shaomin 4 ; Liang, Wenju 1 ;
作者机构: 1.Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, Shenyang 110164, Peoples R China
2.Shenyang Agr Univ, Coll Land & Environm, Shenyang 110161, Peoples R China
3.Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
4.Henan Acad Agr Sci, Inst Plant Nutr & Environm Resources Sci, Zhengzhou 450002, Peoples R China
关键词: Microbial community;Nematode community;Long-term fertilization;Metabolic footprint;Structural equation modeling;Wheat-maize rotation
期刊名称:APPLIED SOIL ECOLOGY ( 影响因子:4.046; 五年影响因子:4.884 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Soil microbes and nematodes are important components of soil biota that strongly affect agricultural productivity and sustainability. Currently, our knowledge on the response of soil biota to agricultural management is restricted. This study aimed to identify the relationship between microbial and nematode communities and explore the resource path that flows within the soil micro-food web under different fertilization practices in a winter-wheat/summer-maize rotation system. The experiment was a randomized complete block design with three replicates for each treatment that included unfertilized control; inorganic N, P and K fertilizer (NPK); NPK plus manure; and NPK plus maize straw. Soil samples were taken at a 0-20 cm depth when wheat and maize were harvested. The results showed that organic manure or maize straw combined with NPK fertilizers had positive effects on the soil microbial and nematode communities. For example, the incorporation of straw increased the fungal biomass. Longterm inorganic fertilization might restrain nematode biomass accumulation especially in fungivorous nematodes. The analysis of the metabolic footprints of nematodes suggested that the incorporation of straw could enhance the carbon resource flow into the soil food web by enhancing nematode biomass. Structural equation modeling analysis suggested that the bottom-up control from the microbial community to the nematode community was more obvious in the wheat season in comparison with the maize season. In addition, a relatively stronger predation relationship was found between omnivores-predators and bacterivores rather than fungivores. Our study suggests that organic management combined with NPK fertilization could effectively enhance the association between microbial and nematode communities, while a crop rotation system with maize may have a negative influence on the structure of the soil micro-food web. (C) 2015 Elsevier B.V. All rights reserved.
- 相关文献
作者其他论文 更多>>
-
Maize functional requirements drive the selection of rhizobacteria under long-term fertilization practices
作者:Zhang, Liyu;Yuan, Liang;Wen, Yanchen;Zhang, Meiling;Huang, Shuyu;Wang, Shiyu;Zhao, Yuanzheng;Li, Dongchu;Xu, Jiukai;Zhao, Bingqiang;Zhang, Lu;Zhang, Huimin;Zhou, Wei;Ai, Chao;Zhang, Liyu;Yuan, Liang;Wen, Yanchen;Zhang, Meiling;Huang, Shuyu;Wang, Shiyu;Zhao, Yuanzheng;Xu, Jiukai;Zhao, Bingqiang;Zhou, Wei;Ai, Chao;Hao, Xiangxiang;Li, Lujun;Gao, Qiang;Wang, Yin;Zhang, Shuiqing;Huang, Shaomin;Liu, Kailou;Yu, Xichu
关键词:functional traits; maize; microbiome; nutrient status; rhizosphere; soil types
-
Divergent chemical compositions of soil organic matter size fractions under long-term amendments across a climate gradient
作者:Song, Fanbo;Wang, Yidong;Hu, Ning;Lou, Yilai;Zhang, Huimin;Li, Dongchu;Zhu, Ping;Gao, Hongjun;Zhang, Shuiqing
关键词:N-containing compounds; Organo-mineral association; Particulate organic matter; Py-GC/MS; Soil organic matter chemistry
-
Carbon storage in an arable soil combining field measurements, aggregate turnover modeling and climate scenarios
作者:Qiu, Shaojun;Zhao, Shicheng;Xu, Xingpeng;He, Ping;Zhou, Wei;Christie, Peter;Yang, Huiyi;Zhang, Shuiqing;Huang, Shaomin;Zhao, Ying;Yan, Na;Banwart, Steven A.;Yan, Na;Banwart, Steven A.;Nikolaidis, Nikolaos
关键词:Organic C stocks; Fertilizer practices; Model simulation; RCP2; 6 scenarios; Soil aggregates
-
Soil and Its Interaction with the Climate Jointly Drive the Change in Basic Soil Productivity under Long-Term Fertilizer Management
作者:Wang, Jinfeng;Xu, Minggang;Yang, Xueyun;Huang, Shaomin;Wu, Lei;Xu, Minggang;Cai, Zejiang
关键词:basic soil productivity; DSSAT model; climate; fertilizer management; wheat-maize rotation
-
Long-Term Organic Substitution Promotes Carbon and Nitrogen Sequestration and Benefit Crop Production in Upland Field
作者:Xu, Hu;Yang, Xueyun;Zhang, Shulan;Xu, Hu;Cai, Andong;Wang, Boren;Sun, Nan;Xu, Minggang;Zhang, Wenju;Xu, Hu;Colinet, Gilles;Cai, Andong;Huang, Shaomin;Wang, Boren;Zhu, Ping;Xu, Minggang
关键词:long-term experiment; soil profile; carbon sequestration; crop productivity; sustainable yield index
-
Soil enzyme activities, soil physical properties, photosynthetic physical characteristics and water use of winter wheat after long-term straw mulch and organic fertilizer application
作者:Yang, Yonghui;Wu, Jicheng;Gao, Cuimin;Zhang, Shuiqing;Yang, Yonghui;Liu, Hao;Yang, Yonghui;Wu, Jicheng;Gao, Cuimin;Yang, Yonghui;Wu, Jicheng;Gao, Cuimin;Zhang, Sensen;Tang, Darrell W. S.
关键词:straw; soil microbial biomass nitrogen and carbon; organic fertilizer; soil enzymes; photosynthetic physical characteristics; water use efficiency
-
Varying microbial utilization of straw-derived carbon with different long-term fertilization regimes explored by DNA stable-isotope probing
作者:Guo, Tengfei;Zhang, Shuiqing;Yue, Ke;Huang, Shaomin;Zhang, Qian;Song, Dali;Ai, Chao;Zhou, Wei
关键词:Stable isotope probing; Microbial utilizers; Maize straw; Long-term fertilization; Edaphic factors