您好,欢迎访问河北省农林科学院 机构知识库!

Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis

文献类型: 外文期刊

作者: Li, Hui-cong 1 ; Zhang, Hua-ning 1 ; Li, Guo-liang 1 ; Liu, Zi-hui 1 ; Zhang, Yan-min 1 ; Zhang, Hong-mei 1 ; Guo, Xiu 1 ;

作者机构: 1.Hebei Acad Agr & Forestry Sci, Inst Genet & Physiol, Plant Genet Engn Ctr Hebei Prov, Shijiazhuang 050051, Peoples R China

关键词: drought-stress tolerance;heat shock transcription factor;transformation;thermotolerance;ZmHsf06

期刊名称:FUNCTIONAL PLANT BIOLOGY ( 影响因子:3.101; 五年影响因子:3.248 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Based on the information of 25 heat shock transcription factor (Hsf) homologues in maize according to a genome-wide analysis, ZmHsf06 was cloned from maize leaves and transformed into Arabidopsis thaliana (L. Heynh.) (ecotype, Col-0). Three transgenic positive lines were selected to assess the basic and acquired thermotolerance and drought-stress tolerance under stresses and for some physiological assays. The sequence analysis indicates that ZmHsf06 contained the characteristic domains of class A type plant Hsfs. The results of qRT-PCR showed that the expression levels of ZmHsf06 were elevated by heat shock and drought stress to different extents in three transgenic lines. Phenotypic observation shows that compared with the Wt (wild-type) controls, the overexpressing ZmHsf06 of Arabidopsis plants have enhanced basal and acquired thermotolerance, stronger drought-stress tolerance and growth advantages under mild heat stress conditions. These results are further confirmed by physiological and biochemical evidence that transgenic Arabidopsis plants exhibit higher seed germination rate, longer axial-root length, higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), higher leaf chlorophyll content, but lower relative electrical conductivity (REC), malondialdehyde (MDA) and osmotic potential (OP) than the Wt controls after heat shock and drought treatments. ZmHsf06 may be a central representative of maize Hsfs and could be useful in molecular breeding of maize or other crops for enhanced tolerances, particularly during terminal heat and drought stresses.

  • 相关文献

[1]玉米热激转录因子基因ZmHsf06表达提高拟南芥耐盐性. 李国良,李孟军,刘子会,张华宁,郭秀林. 2016

[2]玉米热激转录因子基因(ZmHsf06)的克隆、表达和定位分析. 李慧聪,李国良,郭秀林. 2015

[3]Effects of calmodulin on DNA-binding activity of heat shock transcription factor in vitro. Li, B,Liu, HT,Mu, RL,Sun, DY,Zhou, RG.

[4]The Arabidopsis J-protein AtDjB1 facilitates thermotolerance by protecting cells against heat-induced oxidative damage. Zhou, Wei,Zhou, Ting,Li, Mi-Xin,Zhao, Chun-Lan,Jia, Ning,Wang, Xing-Xing,Sun, Yong-Zhen,Xu, Meng,Li, Bing,Zhou, Wei,Li, Guo-Liang,Zhou, Ren-Gang,Zhou, Wei. 2012

[5]Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Zheng, Shu-Zhi,Liu, Yu-Liang,Li, Bing,Shang, Zhong-lin,Sun, Da-Ye,Zhou, Ren-Gang. 2012

[6]Arabidopsis thaliana Phosphoinositide-Specific Phospholipase C Isoform 3 (AtPLC3) and AtPLC9 have an Additive Effect on Thermotolerance. Gao, Kang,Liu, Yu-Liang,Li, Bing,Sun, Da-Ye,Zheng, Shu-Zhi,Gao, Kang,Liu, Yu-Liang,Li, Bing,Sun, Da-Ye,Zheng, Shu-Zhi,Gao, Kang,Liu, Yu-Liang,Li, Bing,Sun, Da-Ye,Zheng, Shu-Zhi,Zhou, Ren-Gang.

[7]A heat-activated calcium-permeable channel - Arabidopsis cyclic nucleotide-gated ion channel 6 - is involved in heat shock responses. Gao, Fei,Zhou, Rengang,Gao, Fei,Han, Xiaowei,Wu, Jianhai,Zheng, Shuzhi,Shang, Zhonglin,Sun, Daye,Li, Bing,Gao, Fei.

[8]Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase. Liu, Zi-Hui,Zhang, Hong-Mei,Li, Guo-Liang,Guo, Xiu-Lin,Zhang, Yan-Min,Liu, Zi-Hui,Zhang, Hong-Mei,Li, Guo-Liang,Guo, Xiu-Lin,Zhang, Yan-Min,Chen, Shou-Yi,Liu, Gui-Bo. 2011

[9]Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests. Wang, Guangjun,Zhang, Jie,Song, Fuping,Wu, Jun,Feng, Shuliang,Huang, Dafang.

[10]Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH). Guo, BH,Zhang, YM,Li, HJ,Du, LQ,Li, YX,Zhang, JS,Chen, SY,Zhu, ZQ. 2000

[11]Inhibition of isoflavone biosynthesis enhanced T-DNA delivery in soybean by improving plant-Agrobacterium tumefaciens interaction. Zhang, Yan-Min,Zhang, Hong-Mei,Liu, Zi-Hui,Guo, Xiu-Lin,Li, Hui-Cong,Li, Guo-Liang,Jiang, Chun-Zhi,Zhang, Meng-Chen.

[12]Improvement of soybean transformation via Agrobacterium tumefaciens methods involving alpha-aminooxyacetic acid and sonication treatments enlightened by gene expression profile analysis. Zhang, Yan-Min,Liu, Zi-Hui,Yang, Rui-Juan,Li, Guo-Liang,Guo, Xiu-Lin,Zhang, Hua-Ning,Zhang, Hong-Mei,Di, Rui,Zhao, Qing-Song,Zhang, Meng-Chen.

作者其他论文 更多>>