您好,欢迎访问江苏省农业科学院 机构知识库!

Differential expression of iron-sulfur cluster biosynthesis genes during peach flowering

文献类型: 外文期刊

作者: Song, Z. -Z. 1 ; Zhang, B. -B. 1 ; Zhang, C. -H. 1 ; Ma, R. -J. 1 ; Yu, M. -L. 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Hort, Nanjing 210014, Jiangsu, Peoples R China

2.Jiangsu Key Lab Hort Crop Genet Improvement, Nanjing 210014, Jiangsu, Peoples R China

关键词: aconitase;Fe homeostasis;nitrite reductase;Prunus persica;shading;succinate dehydrogenase

期刊名称:BIOLOGIA PLANTARUM ( 影响因子:1.747; 五年影响因子:2.146 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Iron is required for the Fe-S cluster assembly which occurs in chloroplasts, mitochondria, and cytosol and here we characterized 44 Fe-S cluster biosynthesis genes and investigated their expression profiles during different peach flowering stages. Quantitative real-time PCR analysis shows that the highest expression of most peach Fe-S cluster biosynthesis genes appeared in the full bloom stage. Also, the highest Fe accumulation occurred in the full bloom stage followed by beginning bloom, petal fall, and bud swell stages. Activities of nitrite reductase (NiR) and succinate dehydrogenase (SDH) were closely correlated to the flower Fe content, whereas the aconitase (ACO) activity kept steady during the whole flowering process. Moreover, shading treatment significantly reduced Fe accumulation and NiR, SDH, and ACO activities of the full blooming flowers. Seventeen Fe-S cluster biosynthesis genes were down-regulated in response to a shading treatment. In particular, plastid sulfur mobilization genes were sensitive to the shading treatment.

  • 相关文献

[1]Differential expression of iron-sulfur cluster biosynthesis genes during peach fruit development and ripening, and their response to iron compound spraying. Song, Zhizhong,Ma, Ruijuan,Zhang, Bingbing,Guo, Shaolei,Yu, Mingliang,Song, Zhizhong,Ma, Ruijuan,Zhang, Bingbing,Guo, Shaolei,Yu, Mingliang,Korir, Nicholas Kibet.

[2]Effects of Waterlogging and Shading at Jointing and Grain-Filling Stages on Yield Components of Winter Wheat. Liu, Yang,Shi, Chunlin,Xuan, Shouli,Wei, Xiufang,Shi, Yongle,Luo, Zongqiang. 2016

[3]Computational identification of microRNAs in peach expressed sequence tags and validation of their precise sequences by miR-RACE. Zhang, Yanping,Yu, Huaping,Han, Jian,Song, Changnian,Fang, Jinggui,Yu, Mingliang,Ma, Ruijuan.

[4]Isolation, cloning, and expression of five genes related to nitrogen metabolism in peach (Prunus persica L. Batsch). Zhang, C. H.,Zhang, B. B.,Yu, M. L.,Ma, R. J.,Song, Z. Z.,Korir, N. K..

[5]Transcription of potassium transporter genes of KT/HAK/KUP family in peach seedlings and responses to abiotic stresses. Song, Z. -Z.,Yang, Y.,Ma, R. -J.,Xu, J. -L.,Yu, M. -L.,Song, Z. -Z.,Yang, Y.,Ma, R. -J.,Xu, J. -L.,Yu, M. -L.,Song, Z. -Z..

[6]Inbreeding and coancestry of the major commercial fresh market peach cultivars in China. Ma, Ruijuan,Yu, Mingliang,Du, Ping,Shen, Zhijun,Byrne, David H.. 2006

[7]Characterization of the miR165 family and its target gene Pp-ATHB8 in Prunus persica. Zhang, Chunhua,Guo, Lei,Ma, Ruijuan,Yu, Mingliang,Zhang, Yanping,Han, Jian,Li, Xiaoying. 2012

[8]Effect of salicylic acid on freezing injury in peach floral organs and the expressions of CBF genes. Ma, R. J.. 2017

[9]Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach. Shen, Zhijun,Yu, Mingliang,Ma, Ruijuan,Confolent, Carole,Lambert, Patrick,Poessel, Jean-Luc,Quilot-Turion, Benedicte,Pascal, Thierry. 2013

[10]Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica). Song, Z. Z.,Ma, R. J.,Yu, M. L.. 2015

[11]The PpLTP1 Primary Allergen Gene is Highly Conserved in Peach and Has Small Variations in Other Prunus Species. Zhou, Xiang,Gao, Zhong-shan,Li, Xiong-wei,Jia, Hui-juan,Wu, Hong-xia,Xie, Rang-jin,Gao, Zhong-shan,Wang, Zhi-qiang,Cao, Ke,Yu, Ming-liang,Chen, Shuang-jian,Li, Ying-hui,Wang, Hui-ying,van Ree, Ronald.

作者其他论文 更多>>