Rice GDP-mannose pyrophosphorylase OsVTC1-1 and OsVTC1-3 play different roles in ascorbic acid synthesis
文献类型: 外文期刊
作者: Qin, Hua 1 ; Deng, Zaian 1 ; Zhang, Chuanyu 1 ; Wang, Yayun 1 ; Wang, Juan 1 ; Liu, Hai; Zhang, Zhili; Huang, Rongf 1 ;
作者机构: 1.Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing 100081, Peoples R China
2.Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China
3.Hainan Acad Agr Sci, Haikou 571000, Peoples R China
4.Hainan Acad Agr Sci
关键词: Rice;Ascorbic acid;GDP-D-mannose pyrophosphorylase;L-galactose pathway
期刊名称:PLANT MOLECULAR BIOLOGY ( 影响因子:4.076; 五年影响因子:4.89 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: GDP-d-mannose pyrophosphorylase (GMPase) catalyzes the synthesis of GDP-d-mannose, which is a precursor for ascorbic acid (AsA) synthesis in plants. The rice genome encodes three GMPase homologs OsVTC1-1, OsVTC1-3 and OsVTC1-8, but their roles in AsA synthesis are unclear. The overexpression of OsVTC1-1 or OsVTC1-3 restored the AsA synthesis of vtc1-1 in Arabidopsis, while that of OsVTC1-8 did not, indicating that only OsVTC1-1 and OsVTC1-3 are involved in AsA synthesis in rice. Similar to Arabidopsis VTC1, the expression of OsVTC1-1 was high in leaves, induced by light, and inhibited by dark. Unlike OsVTC1-1, the expression level of OsVTC1-3 was high in roots and quickly induced by the dark, while the transcription level of OsVTC1-8 did not show obvious changes under constant light or dark treatments. In OsVTC1-1 RNAi plants, the AsA content of rice leaves decreased, and the AsA production induced by light was limited. In contrast, OsVTC1-3 RNAi lines altered AsA synthesis levels in rice roots, but not in the leaves or under the light/dark treatment. The enzyme activity showed that OsVTC1-1 and OsVTC1-3 had higher GMPase activities than OsVTC1-8 in vitro. Our data showed that, unlike in Arabidopsis, the rice GPMase homologous proteins illustrated a new model in AsA synthesis: OsVTC1-1 may be involved in the AsA synthesis, which takes place in leaves, while OsVTC1-3 may be responsible for AsA synthesis in roots. The different roles of rice GMPase homologous proteins in AsA synthesis may be due to their differences in transcript levels and enzyme activities.
- 相关文献
作者其他论文 更多>>
-
Knocking Down the Expression of GMPase Gene OsVTC1-1 Decreases Salt Tolerance of Rice at Seedling and Reproductive Stages
作者:Qin, Hua;Wang, Yayun;Wang, Juan;Zhao, Hui;Deng, Zaian;Huang, Rongfeng;Zhang, Zhijin;Wang, Juan;Huang, Rongfeng;Zhang, Zhijin;Liu, Hai;Deng, Zaian;Zhang, Zhili
关键词:
-
Expression profiling of HbWRKY1, an ethephon-induced WRKY gene in latex from Hevea brasiliensis in responding to wounding and drought
作者:Zhang, Quanqi;Zhu, Jiahong;Ni, Yanmei;Cai, Yuanbao;Zhang, Zhili;Zhang, Quanqi;Ni, Yanmei;Zhang, Zhili
关键词:Hevea brasiliensis Muell. Arg.;HbWRKY1;Ethephon;Wounding;Drought
-
Biochemical characterization of a calcium-sensitive protein kinase LeCPK2 from tomato
作者:Zhang, Zhili;Fu, Gui;Chen, Xin;Chang, Wenjun;Zhu, Jiahong
关键词:Calcium-dependent protein kinase;LeCPK2;Kinase-Glo (R) Luminescent Kinase Assay;Tomato
-
HbMT2, an ethephon-induced metallothionein gene from Hevea brasiliensis responds to H2O2 stress
作者:Zhu, Jiahong;Zhang, Quanqi;Wu, Rui;Zhang, Zhili;Zhang, Zhili
关键词:Hevea brasiliensis;Metallothionein;Ethephon;ROS;H2O2
-
Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum
作者:Fan, Wei;Zhang, Zhili;Zhang, Yanlin;Fan, Wei;Zhang, Yanlin;Zhang, Zhili
关键词:Mangrove;Sesuvium portulacastrum;Seawater;Fructose-1,6-bisphosphate aldolase;Glycolytic/gluconeogenesis pathway
-
Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance
作者:Quan, Ruidang;Hu, Shoujing;Zhang, Haiwen;Zhang, Zhijin;Huang, Rongfeng;Quan, Ruidang;Zhang, Haiwen;Zhang, Zhijin;Huang, Rongfeng;Quan, Ruidang;Zhang, Haiwen;Zhang, Zhijin;Huang, Rongfeng;Hu, Shoujing;Zhang, Zhili
关键词:rice;drought tolerance;TSRF1
-
Identification of up-regulated genes provides integrated insight into salt-induced tolerance mechanisms in Sesuvium portulacastrum roots
作者:Fan, Wei;Fan, Wei;Chang, Wenjun;Liu, Xiwen;Zhang, Zhili;Zhang, Zhili;Xiao, Chuan;Yang, Jianli
关键词:Sesuvium portulacastrum;Suppression subtractive hybridization;mRNA differential expression profiles;Salt tolerance