您好,欢迎访问江苏省农业科学院 机构知识库!

Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress

文献类型: 外文期刊

作者: Xu, Jianwen 1 ; Huang, Xi 1 ; Lan, Hongxia 1 ; Zhang, Hongsheng 1 ; Huang, Ji 1 ;

作者机构: 1.Nanjing Agr Univ, State Key Lab Crop Genet & Germplasm Enhancement, Nanjing, Jiangsu, Peoples R China

2.Jiangsu Acad Agr Sci, Inst Ind Crops, Nanjing, Jiangsu, Peoples R China

关键词: Nitrogen metabolism;proteome;rice (Oiyza sativa L.);salt stress

期刊名称:PLANT SIGNALING & BEHAVIOR ( 影响因子:2.247; 五年影响因子:2.369 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Salt stress is an important environmental condition limiting the agricultural production. The reprogram of protein expression is one of the strategies of plants to cope with salt stress. We have previously analyzed the photosynthesis, antioxidant andoxidative phosphorylation involved in the carbon metabolism and the redox metabolism in rice seedlings under salt stress. Here, we focused on the proteins involved in nitrogen metabolic response. As it was reported that the nitrite uptake was enhanced inArabidopsis Pll knock-out mutants, the down-regulation of P-II nitrogen sensing protein in rice probably contributes to the accumulation of amino acids under stress. ln addition, the protein synthesis is limited by the decrease of related proteins, andmore amino acids could be used as the compatible solute. Hence, our study indicates that the rearrangement of nitrogen metabolism under salt stress could accumulate more amino acids as the compatible solute rather than the components of proteins. This study provides information for an improved understanding of nitrogen metabolic response to salt stress in rice.

  • 相关文献

[1]Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Chen, G.,Fan, P. S.,Feng, W. M.,Guan, A. Q.,Lu, Y. Y.,Wan, Y. L..

[2]Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Yang, Bo,Wang, Xiao-Mi,Ma, Hai-Yan,Jia, Yong,Dai, Chuan-Chao,Li, Xia.

[3]Isolation, cloning, and expression of five genes related to nitrogen metabolism in peach (Prunus persica L. Batsch). Zhang, C. H.,Zhang, B. B.,Yu, M. L.,Ma, R. J.,Song, Z. Z.,Korir, N. K..

[4]Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari. Yang, Bo,Ma, Hai-Yan,Wang, Xiao-Mi,Jia, Yong,Hu, Jing,Dai, Chuan-Chao,Li, Xia.

[5]Calcium involved in the poly(gamma-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism. Xu, Zongqi,Lei, Peng,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong,Xu, Zongqi,Lei, Peng,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong,Xu, Xianju,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong. 2014

[6]Physiological, structural, and proteomic analysis of chloroplasts during natural senescence of Ginkgo leaves. Wei, Xiao-Dong,Shi, Da-Wei,Chen, Guo-Xiang,Wei, Xiao-Dong,Shi, Da-Wei.

[7]Integrated transcriptome, proteome and physiology analysis of Epinephelus coioides after exposure to copper nanoparticles or copper sulfate. Wang, Tao,Han, Shiqun,Yan, Shaohua,Wang, Tao,Long, Xiaohua,Chen, Xiaoyan,Liu, Yuanrui,Liu, Zhaopu,Yan, Shaohua.

[8]Effect of postharvest nitric oxide treatment on the proteome of peach fruit during ripening. Kang, Ruoyi,Jiang, Li,Yu, Zhifang,Zhang, Li,Yu, Mingliang,Ma, Ruijuan.

[9]Proteomic analysis of responsive root proteins of Fusarium oxysporum-infected watermelon seedlings. Zhang, Man,Xu, Jinhua,Liu, Guang,Yao, Xiefeng,Ren, Runsheng,Yang, Xingping. 2018

[10]Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.). Sun, Xiaochuan,Xu, Liang,Wang, Yan,Luo, Xiaobo,Kinuthia, Karanja Benard,Nie, Shanshan,Feng, Haiyang,Li, Chao,Liu, Liwang,Sun, Xiaochuan,Xu, Liang,Wang, Yan,Nie, Shanshan,Liu, Liwang,Zhu, Xianwen.

[11]Molybdenum Affects Photosynthesis and Ionic Homeostasis of Chinese Cabbage under Salinity Stress. Hu, Chengxiao,Sun, Xuecheng,Zhao, Xiaohu,Tan, Qiling,Zhang, Ying,Zhang, Mu,Li, Na.

[12]Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris). Zhu, Su-Qin,Chen, Ming-Wei,Liang, Jian-Sheng,Zhu, Su-Qin,Ji, Ben-Hua,Jiao, De-Mao.

[13]Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants. Ding, Xiaotao,Ding, Xiaotao,Deng, Qi,Yu, Chih-Li,Hu, Dafeng, I,Zhang, Dong,Jiang, Yuping,Zhou, Suping.

[14]Physiological and epigenetic analyses of Brassica napus seed germination in response to salt stress. Fang, Yujie,Li, Jian,Jiang, Jinjin,Geng, Yulu,Wang, Jinglei,Wang, Youping,Fang, Yujie.

[15]Comprehensive analysis of differentially expressed genes under salt stress in pear (Pyrus betulaefolia) using RNA-Seq. Li, Hui,Lin, Jing,Yang, Qing-Song,Li, Xiao-Gang,Chang, You-Hong.

[16]Physiological and antioxidant responses of Basella alba to NaCl or Na2SO4 stress. Ai, Shaoying,Yang, Shaohai,Chen, Yong,Sun, Lili,Wang, Ronghui,Li, Mengjun,Zeng, Zhaobing,Ning, Jianfeng,Ai, Shaoying,Yang, Shaohai,Chen, Yong,Sun, Lili,Wang, Ronghui,Li, Mengjun,Zeng, Zhaobing,Ning, Jianfeng,Ai, Shaoying,Yang, Shaohai,Chen, Yong,Sun, Lili,Wang, Ronghui,Li, Mengjun,Zeng, Zhaobing,Ning, Jianfeng,Cui, Lihua.

[17]Genome-wide characterization of the ankyrin repeats gene family under salt stress in soybean. Zhang, Dayong,Wan, Qun,He, Xiaolan,Ning, Lihua,Huang, Yihong,Xu, Zhaolong,Liu, Jia,Shao, Hongbo,Shao, Hongbo.

[18]Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke. Shao, Tianyun,Li, Lingling,Wu, Yawen,Chen, Manxia,Long, Xiaohua,Liu, Zhaopu,Shao, Hongbo,Shao, Hongbo,Rengel, Zed.

[19]Seed Germination Ecology of Catchweed Bedstraw (Galium aparine). Wang, Hongchun,Lou, Yuanlai,Zhang, Bing,Dong, Liyao.

[20]Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. Brestic, Marian,Shao, Hongbo,He, Xiaolan,Shao, Hongbo,Brestic, Marian,Zivcak, Marek,Olsovska, Katarina,Kovar, Marek,Sytar, Oksana.

作者其他论文 更多>>