您好,欢迎访问江苏省农业科学院 机构知识库!

Association analysis for detecting significant single nucleotide polymorphisms for phosphorus-deficiency tolerance at the seedling stage in soybean [Glycine max (L) Merr.]

文献类型: 外文期刊

作者: Ning, Lihua 1 ; Kan, Guizhen 1 ; Du, Wenkai 1 ; Guo, Shiwei; Wang, Qing 1 ; Zhang, Guozheng 1 ; Cheng, Hao 1 ; Yu, Dey 1 ;

作者机构: 1.Nanjing Agr Univ, Natl Ctr Soybean Improvement, Natl Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Jiangsu, Peoples R China

2.Jiangsu Acad Agr Sci, Inst Agrobiotechnol, Prov Key

关键词: association mapping;phosphorus-deficiency tolerance;seedling stage;soybean [Glycine max (L) Merr.]

期刊名称:BREEDING SCIENCE ( 影响因子:2.086; 五年影响因子:2.632 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Tolerance to low-phosphorus soil is a desirable trait in soybean cultivars. Previous quantitative trait locus (QTL) studies for phosphorus-deficiency tolerance were mainly derived from bi-parental segregating populations and few reports from natural population. The objective of this study was to detect QTLs that regulate phosphorus-deficiency tolerance in soybean using association mapping approach. Phosphorus-deficiency tolerance was evaluated according to five traits (plant shoot height, shoot dry weight, phosphorus concentration, phosphorus acquisition efficiency and use efficiency) comprising a conditional phenotype at the seedling stage. Association mapping of the conditional phenotype detected 19 SNPs including 13 SNPs that were significantly associated with the five traits across two years. A novel cluster of SNPs, including three SNPs that consistently showed significant effects over two years, that associated with more than one trait was detected on chromosome 3. All favorable alleles, which were determined based on the mean of conditional phenotypic values of each trait over the two years, could be pyramided into one cultivar through parental cross combination. The best three cross combinations were predicted with the aim of simultaneously improving phosphorus acquisition efficiency and use efficiency. These results will provide a thorough understanding of the genetic basis of phosphorus deficiency tolerance in soybean.

  • 相关文献

[1]Association Mapping of Ferrous, Zinc, and Aluminum Tolerance at the Seedling Stage in Indica Rice using MAGIC Populations. Qian, Qian,Ye, Guoyou,Meng, Lijun,Zhao, Xiangqian,Ponce, Kimberly,Ye, Guoyou,Wang, Baoxiang,Zhao, Xiangqian. 2017

[2]QTL mapping for seedling traits associated with low-nitrogen tolerance using a set of advanced backcross introgression lines of rice. Zhao, Chun-fang,Zhou, Li-hui,Zhang, Ya-dong,Zhu, Zhen,Chen, Tao,Zhao, Qing-yong,Yao, Shu,Yu, Xin,Wang, Cai-lin. 2014

[3]QTLs conferring FOV 7 resistance detected by linkage and association mapping in Upland cotton. Ning, Zhiyuan,Zhang, Tianzhen,Mei, Hongxian,Ai, Nijiang,Zhang, Xin.

[4]Association of Candidate Genes With Submergence Response in Perennial Ryegrass. Wang, Xicheng,Wang, Xicheng,Jiang, Yiwei,Pei, Zhongyou,Liu, Huifen,Jiang, Yiwei,Zhao, Xiongwei,Xiao, Xiangye,Zhao, Xiongwei,Song, Xin. 2017

[5]Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). Xu, Liping,Hu, Kaining,Wen, Jing,Yi, Bin,Shen, Jinxiong,Ma, Chaozhi,Tu, Jinxing,Fu, Tingdong,Zhang, Zhenqian,Guan, Chunyun,Chen, Song,Hua, Wei,Li, Jiana.

作者其他论文 更多>>