您好,欢迎访问浙江省农业科学院 机构知识库!

Silicon Alleviates Cadmium Toxicity in Two Cypress Varieties by Strengthening the Exodermis Tissues and Stimulating Phenolic Exudation of Roots

文献类型: 外文期刊

作者: Guo, Bin 1 ; Liu, Chen 1 ; Ding, Nengfei 1 ; Fu, Qinglin 1 ; Lin, Yicheng 1 ; Li, Hua 1 ; Li, Ningyu 1 ;

作者机构: 1.Zhejiang Acad Agr Sci, Inst Environm Resource Soil & Fertilizer, Hangzhou, Zhejiang, Peoples R China

2.China Geol Survey, Geol Res Ctr Agr Applicat, Hangzhou, Zhejiang, Peoples R China

关键词: Cadmium;Phenolics;Rhizosphere;Root exudation;Silicon

期刊名称:JOURNAL OF PLANT GROWTH REGULATION ( 影响因子:4.169; 五年影响因子:4.038 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The aim of this work was to investigate the effect of silicon (Si) on phenolic exudation of plant roots and cadmium (Cd) bioavailability in rhizospheres. For this purpose, pot experiments with two cypress varieties, Juniperus chinensis and Platycladus orientalis, each subjected to 100 mg kg(-1) Cd and/or 400 mg kg(-1) Si for 220 days, were conducted using a rhizobag technique. The results showed that P. orientalis accumulated a higher amount of Cd, hence caused higher growth inhibition on the leaves compared with J. chinensis. Si alleviated the growth inhibition induced by Cd toxicity on both varieties, but the mechanisms involved were species specific. For J. chinensis, Si did not affect the root exudation but enhanced the Cd retention of the roots by strengthening the exodermis tissues, restraining Cd translocation from the roots to the shoots. For P. orientalis, Si exposure significantly elevated the phenolic exudation (for example, ferulic acid, catechin, and gallic acid) of the roots, which caused greater Cd mobility in the rhizosphere and enhancement of Cd accumulation in the shoots compared with Cd treatment alone. These results suggest that Cd-chelating with the Si-induced phenolics in the rhizosphere is involved in the Cd detoxification in P. orientalis.

  • 相关文献

[1]Manganese availability and microbial populations in the rhizosphere of wheat genotypes differing in tolerance to Mn deficiency. Marschner, P,Fu, QL,Rengel, Z.

[2]Commercial quality, major bioactive compound content and antioxidant capacity of 12 cultivars of loquat (Eriobotrya japonica Lindl.) fruits. Xu, Hong-xia,Chen, Jun-wei. 2011

[3]Characterization of the Appearance, Health-Promoting Compounds, and Antioxidant Capacity of the Florets of the Loose-Curd Cauliflower. Gu, Honghui,Wang, Jiansheng,Zhao, Zhenqing,Sheng, Xiaoguang,Yu, Huifang,Huang, Wenbin. 2015

[4]Effects of Different Drying Methods and Extraction Condition on Antioxidant Properties of Shiitake (Lentinus edodes). Zhang, Zuofa,Lv, Guoying,Pan, Huijuan,Wu, Yongzhi,Fan, Leifa.

[5]Overexpression of AtHsp90.3 in Arabidopsis thaliana impairs plant tolerance to heavy metal stress. Song, H. M.,Wang, H. Z.,Xu, X. B.,Song, H. M.. 2012

[6]Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress. Xue, Dawei,Deng, Xiangxiong,Zhang, Xiaoqin,Xu, Xiangbin,Qian, Qian,Xue, Dawei,Hu, Jiang,Zeng, Dali,Guo, Longbiao,Qian, Qian,Jiang, Hua,Wang, Hua. 2014

[7]Cadmium stabilization with nursery stocks through transplantation: A new approach to phytoremediation. Guo, Bin,Fu, Qinglin,Ding, Nengfei,Liu, Chen,Lin, Yicheng,Li, Hua,Li, Ningyu,Liang, Yongchao.

[8]Toxicity of mixtures of lambda-cyhalothrin, imidacloprid and cadmium on the earthworm Eisenia fetida by combination index (CI)-isobologram method. Wang, Yanhua,Zhao, Xueping,Wang, Qiang,Chen, Chen,Qian, Yongzhong,Kong, Xiangzhen.

[9]Measuring the damage of heavy metal cadmium in rice seedlings by SRAP analysis combined with physiological and biochemical parameters. Zhang, Xiaoqin,Chen, Huinan,Lu, Wenyi,Pan, Jiangjie,Qian, Qian,Xue, Dawei,Jiang, Hua,Qian, Qian.

[10]EFFECT OF FERTILIZERS ON CD UPTAKE OF AMARANTHUS HYPOCHONDRIACUS, A HIGH BIOMASS, FAST GROWING AND EASILY CULTIVATED POTENTIAL CD HYPERACCUMULATOR. Li, Ning Yu,Zhuang, Ping,Zou, Bi,Li, Zhi An,Li, Ning Yu,Fu, Qing Lin,Guo, Bing. 2012

[11]Evaluations of the DMPP on organic and inorganic nitrogen mineralization and plant heavy metals absorption. Yu Qiaogang,Ma Junwei,Sun Wanchun,Zou Ping,Lin Hui,Fu Jianrong,Fu Changhuan. 2018

[12]Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms. Guo, Bin,Liu, Chen,Li, Hua,Ding, Nengfei,Li, Ningyu,Lin, Yicheng,Fu, Qinglin,Guo, Bin,Liu, Chen,Li, Hua,Ding, Nengfei,Li, Ningyu,Lin, Yicheng,Fu, Qinglin,Yi, Keke.

[13]Influence of montmorillonite on cadmium accumulation in carp, Carassius auratus. Kim, Song-Gwan,Du, Hua-Hua,Dai, Wei,Xu, Zi-Rong,Kim, Song-Gwan,Dai, Wei,Zhang, Xiao-Feng.

[14]Health risk assessment of Chinese consumers to Cadmium via dietary intake. Yu, Guoguang,Zheng, Weiran,Wang, Wen,Dai, Fen,Zhang, Zhiheng,Yuan, Yuwei,Wang, Qiang,Yu, Guoguang,Zheng, Weiran,Wang, Wen,Dai, Fen,Zhang, Zhiheng,Yuan, Yuwei,Wang, Qiang.

[15]Influences of Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate on Heavy Metals and Inorganic Nitrogen Transformation in the Rice Field Surface Water. Yu, Qiaogang,Ma, Junwei,Sun, Wanchun,Lin, Hui,Wang, Qiang,Fu, Jianrong.

[16]EFFECTS OF CHELATORS AND SMALL ORGANIC ACIDS ON PHYTOEXTRACTION OF CD FROM SOIL WITH AMARANTHUS HYPOCHONDRIACUS L.. Li, Ningyu,Fu, Qinglin,Guo, Bin,Li, Ningyu,Li, Zhian,Zhuang, Ping.

[17]Agricultural Technologies for Enhancing the Phytoremediation of Cadmium-Contaminated Soil by Amaranthus hypochondriacus L.. Li, Ningyu,Li, Zhian,Zhuang, Ping,Li, Ningyu,Fu, Qinglin,Guo, Bin,Li, Hua.

[18]Enhancement of Cd phytoextraction by hyperaccumulator Sedum alfredii using electrical field and organic amendments. Xiao, Wendan,Ye, Xuezhu,Zhang, Qi,Hu, Jing,Gao, Na,Li, Dan,Wang, Jingwen,Xu, Haizhou,Yao, Guihua.

[19]Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Guo, B.,Liang, Y. C.,Zhu, Y. G.,Zhao, F. J..

[20]Responses to cadmium stress in two tomato genotypes differing in heavy metal accumulation. Zhao, Shouping,Zhang, Yongzhi,Ye, Xuezhu,Zhang, Qi,Xiao, Wendan.

作者其他论文 更多>>