您好,欢迎访问北京市农林科学院 机构知识库!

Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale

文献类型: 外文期刊

作者: Yuan, Lin 1 ; Pu, Ruiliang 4 ; Zhang, Jingcheng 2 ; Wang, Jihua 3 ; Yang, Hao 3 ;

作者机构: 1.Zhejiang Univ Water Resources & Elect Power, Sch Informat Engn & Art & Design, Hangzhou 310018, Zhejiang, Peoples R China

2.Hangzhou Dianzi Univ, Coll Life Informat Sci & Instrument Engn, Hangzhou 310018, Zhejiang, Peoples R China

3.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

4.Univ S Florida, Sch Geosci, Tampa, FL 33620 USA

关键词: Powdery mildew;Winter wheat;Spectral angle mapping (SAM);SPOT-6

期刊名称:PRECISION AGRICULTURE ( 影响因子:5.385; 五年影响因子:5.004 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Efficient crop protection management requires timely detection of diseases. The rapid development of remote sensing technology provides a possibility of spatial continuous monitoring of crop diseases over a large area. In this study, to monitor powdery mildew in winter wheat in an area where a severe disease infection occurred, the capability of high resolution (6 m) multi-spectral satellite imagery, SPOT-6, in disease mapping was assessed and validated using field survey data. Based on a rigorous feature selection process, five disease sensitive spectral features: green band, red band, normalized difference vegetation index, triangular vegetation index, and atmospherically-resistant vegetation index were selected from a group of candidate spectral features/variables. A spectral correction was processed on the selected features to eliminate possible baseline effect across different regions. Then, the disease mapping method was developed based on a spectral angle mapping technique. By validating against a set of field survey data, an overall mapping accuracy of 78 % and kappa coefficient of 0.55 were achieved. Such a moderate but practically acceptable accuracy suggests that the high resolution multi-spectral satellite image data would be of great potential in crop disease monitoring.

  • 相关文献

[1]Damage Mapping of Powdery Mildew in Winter Wheat with High-Resolution Satellite Image. Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Wang, Jihua,Zhang, Jingcheng,Wang, Jihua,Zhang, Jingcheng,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Wang, Jihua,Shi, Yeyin. 2014

[2]CHARACTERIZATION OF POWDERY MILDEW IN WINTER WHEAT USING MULTI-ANGULAR HYPERSPECTRAL MEASUREMENTS. Jinling Zhao,Lin Yuan,Linsheng Huang,Dongyan Zhang,Jingcheng Zhang,Xiaohe Gu. 2013

[3]Discrimination of yellow rust and powdery mildew in wheat at leaf level using spectral signatures. Yuan, Lin,Zhang, Jingcheng,Zhao, Jinling,Du, Shizhou,Huang, Wenjiang,Wang, Jihua. 2012

[4]New Optimized Spectral Indices for Identifying and Monitoring Winter Wheat Diseases. Huang, Wenjiang,Guan, Qingsong,Guan, Qingsong,Zhao, Jinling,Liang, Dong,Huang, Linsheng,Zhang, Dongyan,Luo, Juhua,Zhang, Jingcheng. 2014

[5]Mapping of powdery mildew using multi-spectral HJ-CCD image in Beijing suburban area. Yuan, Lin,Zhang, Jingcheng,Zhao, Jinling,Huang, Linsheng,Yang, Xiaodong,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Wang, Jihua,Huang, Linsheng. 2013

[6]CHARACTERIZATION OF POWDERY MILDEW IN WINTER WHEAT USING MULTI-ANGULAR HYPERSPECTRAL MEASUREMENTS. Zhao, Jinling,Yuan, Lin,Zhang, Dongyan,Zhang, Jingcheng,Gu, Xiaohe,Huang, Linsheng,Zhang, Dongyan. 2013

[7]Forecasting of Powdery Mildew disease with multi-sources of remote sensing information. Zhang, Jingcheng,Yuan, Lin,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Zhang, Jingcheng,Yang, Guijun,Zhang, Jingcheng,Yang, Guijun,Zhang, Jingcheng,Yuan, Lin. 2014

[8]Simulation of Winter Wheat Phenology in Beijing Area with DSSAT-CERES Model. Haikuan Feng,Zhenhai Li,Peng He,Xiuliang Jin,Guijun Yang,Haiyang Yu,Fuqin Yang. 2016

[9]Retrieval of LAI and leaf chlorophyll content from remote sensing data by agronomy mechanism knowledge to solve the ill-posed inverse problem. Zhenhai Li,Chenwei Nie,Guijun Yang,Xingang Xu,Xiuliang Jin,Xiaohe Gu. 2014

[10]Monitoring the ratio of leaf carbon to nitrogen in winter wheat with hyperspectral measurements. Xin-gang Xu,Xiao-dong Yang,Xiao-he Gu,Hao Yang,Hai-kuan Feng,Gui-jun Yang,Xiao-yu,Song. 2015

[11]Study the Spatial-Temporal Variation of Wheat Growth Under Different Site-Specific Nitrogen Fertilization Approaches. Bei Cui,Wenjiang Huang,Xiaoyu Song,Huichun Ye,Yingying Dong. 2019

[12]EVALUATION OF ARABLE LAND YIELD POTENTIAL THROUGH REMOTE SENSING MONITORING. Song Xiaoyu,Gu Xiaohe,Wang Jihua,Chang Hong. 2014

[13]SPATIAL VARIABILITY OF WINTER WHEAT GROWTH BASED ON THE INDIVIDUAL INDEX AND THE POPULATION INDEX. Bei Cui,Xiaoyu Song,Wude Yang,Meichen Feng,Jihua Wang. 2014

[14]Spectroscopic Leaf Level Detection of Powdery Mildew for Winter Wheat Using Continuous Wavelet Analysis. Zhang Jing-cheng,Yuan Lin,Wang Ji-hua,Huang Wen-jiang,Chen Li-ping,Zhang Dong-yan,Zhang Jing-cheng,Yuan Lin,Wang Ji-hua,Zhang Dong-yan,Huang Wen-jiang. 2012

[15]Detection of Wheat Powdery Mildew by Differentiating Background Factors using Hyperspectral Imaging. Zhang, Dongyan,Zhang, Lifu,Zhang, Dongyan,Wang, Xiu,Zhang, Dongyan,Wang, Xiu,Lin, Fenfang,Huang, Yanbo. 2016

[16]Analysis of Differences in Wheat Infected with Powdery Mildew Based on Fluorescence Imaging System. Du, Shizhou,Cao, Chengfu,Qiao, Yuqiang,Li, Wei,Zhang, Xiangqian,Chen, Huan,Zhao, Zhu,Du, Shizhou,Liao, Qinhong,Liao, Qinhong. 2016

[17]Differentiation of Yellow Rust and Powdery Mildew in Winter Wheat and Retrieving of Disease Severity Based on Leaf Level Spectral Analysis. Yuan Lin,Zhang Jing-cheng,Zhao Jin-ling,Wang Ji-hua,Yuan Lin,Zhang Jing-cheng,Wang Ji-hua,Huang Wen-jiang. 2013

[18]Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Zhang, Jing-Cheng,Wang, Ji-hua,Huang, Wen-jiang,Yuan, Lin,Luo, Ju-hua,Zhang, Jing-Cheng,Pu, Rui-liang,Zhang, Jing-Cheng,Yuan, Lin. 2012

[19]Comparative transcriptome profiling of genes and pathways related to resistance against powdery mildew in two contrasting melon genotypes. Zhu, Qianglong,Gao, Peng,Wan, Yan,Cui, Haonan,Fan, Chao,Liu, Shi,Luan, Feishi,Zhu, Qianglong,Gao, Peng,Wan, Yan,Cui, Haonan,Liu, Shi,Luan, Feishi,Fan, Chao. 2018

[20]Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Yuan, Lin,Nie, Chenwei,Wang, Jihua,Zhang, Jingcheng,Yuan, Lin,Nie, Chenwei,Wang, Jihua,Zhang, Jingcheng,Huang, Yanbo,Loraamm, Rebecca W.. 2014

作者其他论文 更多>>